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Preface

This book follows the course M9121 Time Series I taught by assoc. prof. Kraus on SCI MUNI,
Department of Mathematics on Statistics, as it appeared in Fall 2023.

The course offers a comprehensive coverage of selected fundamental methods and models for time series. The
course covers theoretical foundations, statistical models and inference, software implementation, application
and interpretation.

The students will gain a deeper understanding of the methods and their relations and learn to recognize situ-
ations that can be addressed by the models discussed in the course, choose an appropriate model, implement
it and interpret the results.

Česká verze:

Předmět se věnuje podrobnému výkladu některých základníchmetod amodelů pro časové řady. Kurs pokrývá
teoretické základy, statistické modely a inferenci, softwarovou implementaci, aplikaci a interpretaci.

V kursu studenti získají hlubší pochopení vlastností metod a souvislostí mezi nimi, naučí se rozeznat situace,
které lze řešit s pomocí diskutovanýchmodelů, jsou schopni vybrat vhodnýmodel z této třídy, implementovat
jej a interpretovat jeho výsledky.
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1 Introduction

Time series data have distinct features – data are collected sequentially over time, order of obser-
vations matters and observations do not arise independently, they are serially dependent. Also, they
servemany purposes, e.g. we can use them to understand ormodel the stochastic mechanism that
gives rise to an observed series or to predict or forecast the future values of a series based on the
history, and to quantify the uncertainty of predictions.

1.1 Abundance of Canadian hare

We can surely make the following observations – there is a stable level (oscillating around some
stablemean) and no obvious trend. More so, the neighboring values are very closely related, there
are no large changes from one year to the next. From even closer analysis a question arises – are
consecutive years related? Could be useful for the prediction

Our old approach – Linear regression

It is easy to see that naive linear regression would not provide good predictive capabilities -
it would predict a point on the mean line

But we can also deduce from looking at year-to-year changes, that there is an obvious upward
trend, low/high values tend to be followed by low/high values and there is a positive serial cor-
relation.
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1.2 LA annual rainfall

Consider now the following data about annual rainfall in Los Angeles:

And again we can deduce from the data that there is a considerable variation and no obvious
trends (this can be expected a priori).
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And even when looking at year-to-year changes (so-called a lag plot) it shows no general pattern,
little correlation between consecutive years and hints at difficult forecasting.

1.3 Airline passengers
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Here is another example of a time series, where this time we can see the following attributes of
this data. There is an obvious global increasing trend with a seasonal pattern of behavior and an
increasing variance.

1.4 CZ unemployment rate

Unlike the previous example, a trend (or a tendency) can be seen here as well, but in amuchmore
complicated manner (in a shorter timeframe, no global trends present). Though it still contains
seasonal effects (“oscillations” of sorts)

By aggregation of the data, we can preserve the overall trend, but lose the seasonal effects (which
we might consider as a noise of sorts). On the other hand, we can also study purely the seasonal
trends

10



Such visualization shows variability between seasonal values and variability/trends within sea-
sons. Also notice that summer brings a lower unemployment rate, as could be seen in the full data
(but less clearly). There aremultiple ways of visualizing the same data and each shows a different
thing. The following plot shows a correlation between months and the outlier year 2017.

Conversely, next, we can notice the global trends and correlations between years.
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Lastly, based on this information wemight want to see the lag plots, where wewill see a strong cor-
relation between consecutive values and a strong correlation between values 12 months apart.

1.5 S&P500 Index series (1990–1999)
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Yet another dataset shows other features of time serieswe can come across. Here that is a changing
variance, variability (volatility), which occurs in clusters, and no obvious relationship between
consecutive values. These features are typical of financial time series (next semester).

1.6 Covid-19 hospital occupancy

For a Covid-19 disease hospital acceptance (incoming occupancy) rate:

In this case, prediction (and decisions based on that) was the driving force behind this model and
as such it needed to include prediction with uncertainty quantification

Note

Time series analysis provides short-term predictions, rather than long-term extrapolations
that require a detailed model of the underlying phenomenon.

From the Covid-19 we can see that ARIMA models (covered in this course) are still useful (and
can be among the best models available).

13
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2 Fundamental concepts

2.1 A Stochastic Point of View

The observed time series X1, … , X𝑛 is a sequence of numbers and our aim is to understand the
mechanism that generated the series andmake use of it. Thereforewe need amathematicalmodel,
then capture randomness, by which we mean a model for uncertainty and/or limited knowledge.
Partial information also will need to be addressed. The observed data are seen as a sequence of
realizations of random variables and as such we need to study them all together, including their
relationships.

Definition 2.1. A stochastic process is a family of random variables {X𝑡 ∶ 𝑡 ∈ 𝑇} defined on a prob-
ability space (Ω, 𝒜, 𝑃).

Where in the Definition 2.1 the meaning of used symbols is as follows:

• 𝑇 is the index set;
• {X𝑡 ∶ 𝑡 ∈ 𝑇} can be seen as a function of 𝑡 and 𝜔, i.e., {X(𝑡, 𝜔) ∶ 𝑡 ∈ 𝑇, 𝜔 ∈ Ω};
• for a fixed 𝑡 ∈ 𝑇, X𝑡 = X𝑡(⋅) = {X𝑡(𝜔) ∶ 𝜔 ∈ Ω} is a random variable defined on Ω, i.e. the

process is seen as a collection of random variables indexed by 𝑇;
• for a fixed 𝜔 ∈ Ω, X = X(𝜔) = {X𝑡(𝜔) ∶ 𝑡 ∈ 𝑇} is a function on 𝑇, i.e. the process is seen as

a random function.

As such, we call a realization of {X𝑡 ∶ 𝑡 ∈ 𝑇} a sample path/trajectory/realization.

2.1.1 Types of stochastic processes

There are many types of stochastic processes, but most importantly (for us):

• time series (discrete-time processes)

– 𝑇 = ℤ (or 𝑇 ⊂ ℤ, e.g., 𝑇 = ℕ);
– the observed time series is seen as a realization of the stochastic process {X𝑡 ∶ 𝑡 ∈ ℤ} =

{… , X−1, X0, X1, … };
– a time series is a random sequence and a sequence of random variables;

• continuous-time processes: 𝑇 = ℝ or 𝑇 = [𝑎, 𝑏] (random function);
• spatially indexed processes: 𝑇 = ℝ𝑑 or 𝑇 ⊂ ℝ𝑑 (random fields);
• processes on lattices: 𝑇 = ℤ𝑑, …;
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• spatio-temporal processes: 𝑇 = ℝ𝑑 × [𝑎, 𝑏], …;
• etc.

Although we will see other types of index sets in other courses, in our lectures we will stick to
time series only (where time is discretized).

2.1.2 Discrete sampling of time series

Time series are random sequences, i.e., 𝑇 = ℤ, where the discretization can be due to discrete
sampling of a continuous-time process, e.g. closing prices of a share, electrical signal in telecom-
munications, aggregation of a continuous timeprocess, e.g. daily precipitation,monthly electricity
production, or a discrete realization, e.g. regularly repeated medical experiment.

2.2 Distribution of a stochastic process

We can define a finite-dimensional distributions for all 𝑘 ∈ ℕ, 𝑡1, … , 𝑡𝑘 ∈ 𝑇 as

𝐹𝑡1,…,𝑡𝑘
(𝑥1, … , 𝑥𝑘) = 𝑃(X𝑡1

≤ 𝑥1, … , X𝑡𝑘
≤ 𝑥𝑘).

Here, we took a random vector X𝑡1
, … , X𝑡𝑘

and looked at its joint distribution.

A system of distribution functions {𝐹𝑡1,…,𝑡𝑘
∶ 𝑡1, … , 𝑡𝑘 ∈ 𝑇, 𝑘 ∈ ℕ} is called consistent, if it has

following properties

• lim𝑥𝑘+1→∞ 𝐹𝑡1,…,𝑡𝑘,𝑡𝑘+1
(𝑥1, … , 𝑥𝑘, 𝑥𝑘+1) = 𝐹𝑡1,…,𝑡𝑘

(𝑥1, … , 𝑥𝑘);
• 𝐹𝑡1,…,𝑡𝑘

(𝑥1, … , 𝑥𝑘) = 𝐹𝑡𝑖1 ,…,𝑡𝑖𝑘
(𝑥𝑖1 , … , 𝑥𝑖𝑘) for all permutations (𝑖1, … , 𝑖𝑘) of (1, … , 𝑘).

A stochastic process has always a consistent system of distributions.

Theorem 2.1 (Daniell–Kolmogorov). Let {𝐹𝑡1,…,𝑡𝑘
∶ 𝑡1, … , 𝑡𝑘 ∈ 𝑇, 𝑘 ∈ ℕ} be a consistent system of dis-

tribution functions. Then there exists a stochastic process {X𝑡 ∶ 𝑡 ∈ 𝑇} such that for all 𝑘 ∈ ℕ, 𝑡1, … , 𝑡𝑘 ∈
𝑇 the joint distribution function of (𝑋𝑡1

, … , 𝑋𝑡𝑘
) is 𝐹𝑡1,…,𝑡𝑘

.

For the distribution of a stochastic process, it holds that a process whose finite-dimensional dis-
tributions are all multivariate normal is called Gaussian. Often, much information is contained in
means, variances and covariances and thus, focusing on the first and secondmoments is often suf-
ficient. Moreover, if the joint distributions are multivariate normal, the first and second moments
completely determine the joint distribution

Definition 2.2 (Mean, autocovariance, autocorrelation). For a stochastic process, we define:

• mean function
𝜇𝑡 = 𝔼 X𝑡, 𝑡 ∈ ℤ;
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• autocovariance function (acov)

𝛾(𝑠, 𝑡) = cov(X𝑠, X𝑡) = 𝔼 ((X𝑠 − 𝜇𝑠)(X𝑡 − 𝜇𝑡)) , 𝑠, 𝑡 ∈ ℤ;

• autocorrelation function (acf)

𝜌(𝑠, 𝑡) = cor(X𝑠, X𝑡) = cov(X𝑠, X𝑡)
√varX𝑠 varX𝑡

, 𝑠, 𝑡 ∈ ℤ.

2.3 Examples

2.3.1 White noise process

Let {ε𝑡 ∶ 𝑡 ∈ ℤ} be a sequence of uncorrelated randomvariableswithmean 0 and variance𝜎2. That
is, 𝔼 X𝑡 = 0,varX𝑡 = 𝜎2, cov(X𝑠, X𝑡) = 0, 𝑠 ≠ 𝑡 and we introduce notation {ε𝑡} ∼ WN (0, 𝜎2).

2.3.2 Moving average

Let {ε𝑡 ∶ 𝑡 ∈ ℤ} be WN (0, 𝜎2) and define

X𝑡 = (ε𝑡 + ε𝑡−1)/2.

16



Then the mean function is given by
𝜇𝑡 = 𝔼 (ε𝑡 + ε𝑡−1) /2 = 0,

and the variance by

𝛾(𝑡, 𝑡) = var ((ε𝑡 + ε𝑡−1)/2) = 𝜎2

2 .

Then autocovariance of the process is

𝛾(𝑡, 𝑡 + 1) = cov ((ε𝑡 + ε𝑡−1)/2, (ε𝑡+1 + ε𝑡)/2) = 𝜎2

2 ,

𝛾(𝑡, 𝑡 + ℎ) = cov ((ε𝑡 + ε𝑡−1)/2, (ε𝑡+ℎ + ε𝑡+ℎ−1)/2) = 0, ∣ℎ∣ > 1
and lastly, the autocorrelation can be expressed as

𝜌(𝑠, 𝑡) =
⎧{{
⎨{{⎩

1, 𝑠 = 𝑡,
0.5, |𝑠 − 𝑡| = 1,
0, |𝑠 − 𝑡| > 1,

so in other words, we have a correlation between consecutive values, which is constant in time.

17



2.3.3 Random walk

Random walk is a stochastic process that emerges from the cumulative sum of white noise. Let ε1, ε2, … be
a sequence of independent, identically distributed random variables with mean 0 and variance
𝜎2. Then define

X𝑡 =
𝑡

∑
𝑗=1

ε𝑗, 𝑡 = 1, 2, …

or in other words
X1 = ε1, X𝑡+1 = X𝑡 + ε𝑡, 𝑡 = 2, 3, … ,

where ε𝑡 are the steps taken by the “random walker”, X𝑡 is his position at time 𝑡.

18



3 Autocorrelation and stationarity

I was absent

These notes are just a summary of the presentation given to us. As such, it is hard to comment
on the true intent or intuition behind some of the presented results or sentences.
Thank you for your understanding.

As a starter, it is good to realize, that while correlation is useful, one should be mindful of what it
really means.

Figure 3.1: Demonstration of correlation

3.1 Properties of autocovariance

As we’ve seen earlier in the Definition 2.2, the autocovariance function is defined as

𝛾(𝑠, 𝑡) = cov(X𝑠, X𝑡), 𝑠, 𝑡 ∈ 𝑇 ⊂ ℝ.

We may notice that for any 𝑘 ∈ ℕ, 𝑡1, … , 𝑡𝑘 ∈ 𝑇, 𝑐1, … , 𝑐𝑘 ∈ ℝ

0 ≤ var⎛⎜⎜
⎝

𝑘
∑
𝑗=1

𝑐𝑗X𝑡𝑗
⎞⎟⎟
⎠

=
𝑘

∑
𝑗=1

𝑘
∑
𝑙=1

𝑐𝑗𝑐𝑙𝛾(𝑡𝑗, 𝑡𝑙).
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Hence the autocovariance function of a process with finite secondmoments is non-negative definite.
The converse holds true as well – for any non-negative definite function 𝑔 on 𝑇 × 𝑇 there exists a
stochastic process such that 𝑔 is its autocovariance function. Because one can take matrices of the
form

𝑽𝑡1,…,𝑡𝑘
= (𝑔(𝑡𝑗, 𝑡𝑙))

𝑘
𝑗,𝑙=1

and consider the multivariate Gaussian distributions 𝒩𝑘 (0, 𝑽𝑡1,…,𝑡𝑘
), then by the Daniell-

Kolmogorov Theorem 2.1 there exists a Gaussian process with these finite-dimensional
distributions.

3.2 Stationarity

Stationarity is a concept best introduced by illustrations.

(a) Simulated stationary processes (b) Simulated non-stationary processes

Definition 3.1 (Strict stationarity). A process {X𝑡 ∶ 𝑡 ∈ ℤ} is said to be strictly stationary if the
joint distribution of X𝑡1

, … , X𝑡𝑘
is the same as the joint distribution of X𝑡1+ℎ, … , X𝑡𝑘+ℎ for all 𝑘 ∈

ℕ, 𝑡1, … , 𝑡𝑘 ∈ ℤ, ℎ ∈ 𝑍, that is

𝐹𝑡1,…,𝑡𝑘
(𝑥1, … , 𝑥𝑘) = 𝐹𝑡1+ℎ,…,𝑡𝑘+ℎ(𝑥1, … , 𝑥𝑘).

Definition 3.2 (Weak stationarity). A process {X𝑡 ∶ 𝑡 ∈ ℤ} is said to be weakly (weak-sense,
second-order) stationary if the 𝜇𝑡 is constant in time and 𝛾(𝑠, 𝑡) depends only on the difference
𝑠 − 𝑡.

Any strictly stationary defined in Definition 3.1 process that has a finite mean and a covariance
is also stationary in the weak sense. Also, if all joint distributions are Gaussian, then weak and
strong stationarity are equivalent.

Tip

By convention, by simply “stationarity” we mean weak-sense stationarity – Definition 3.2.
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Example 3.1. Let us define
X𝑡 = 𝑎 cos (2𝜋(𝑓 𝑡 + Φ)) , 𝑡 ∈ ℤ, (3.1)

where 𝑎 is the amplitude, 𝑓 frequency (e.g. 𝑓 = 1/12) and Φ ∈ [0, 1] is the phase. Consider now
a random phase given by Φ ∼ Unif([0, 1]). It can be easily computed that

𝔼 X𝑡 = ∫
1

0
𝑎 cos (2𝜋(𝑓 𝑡 + Φ)) 𝜙 = 0.

From the Definition 2.2 and (3.1), it can be shown the autocovariance function 𝛾 of this process
has the form

𝛾(𝑠, 𝑡) = ∫
1

0
𝑎 cos (2𝜋(𝑓 𝑠 + Φ)) 𝑎 cos (2𝜋(𝑓 𝑡 + Φ)) Φ

= 𝑎2

2 cos (2𝜋(𝑠 − 𝑡))
(3.2)

and as such, the autocorrelation is 𝜌(ℎ) = cos(2𝜋𝑓 ℎ), ℎ ∈ ℤ. Hence this stationary process fulfills
the criteria for WSS, see Definition 3.2.

Figure 3.3: “Non-stationary looking” trajectory

It should be noted that stationarity is the property of the distribution, not of the realization.
Therefore one trajectory may not look stationary, but the process as a whole may be stationary, see
Figure 3.3. In this example, it is precisely the random phase Φ, that makes the process stationary
– independent random amplitude and phase would not be stationary.

Stationarity is good for inference

Stationarity implies that properties of a givenprocess are stable (aka do not change) in time. So
with more and more data, we collect more and more information about the same, invariant
structure. As such, averaging makes sense – without the stationarity averaging wouldn’t
be meaningful, unless we know how the properties like the mean and the autocovariance
function evolve in time.

Let now {X𝑡 ∶ 𝑡 ∈ ℤ} be a stationary time series. Let us assume we want to estimate the
mean 𝜇 = 𝔼 X𝑡, autocovariance function 𝛾(ℎ) = cov(X𝑡, X𝑡+ℎ) and autocorrelation function
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𝜌(ℎ) = cor(X𝑡, X𝑡+ℎ) given the observed data X1, … , X𝑛. Therefore our goals are to find estimators
μ̂, γ̂(ℎ), ̂ρ(ℎ), understand their properties and use them in statistical inference and graphics.

3.2.1 Estimation of the mean

As was stated before, we assume that 𝔼 X𝑡 = 𝜇 for all 𝑡. An obvious choice of the estimator would
be the sample mean

μ̂ = 𝐗 = 1
𝑛

𝑛
∑
𝑖=1

X𝑖.

Its expected value is given by

𝔼 μ̂ = 𝔼 ⎛⎜
⎝

1
𝑛

𝑛
∑
𝑖=1

X𝑖
⎞⎟
⎠

= 𝜇,

so μ̂ is unbiased (regardless of the covariance structure of the process). To judge the quality of the
estimator, let us look at its variance (see (3.2) for reference for derivation)

var μ̂ = var⎛⎜
⎝

1
𝑛

𝑛
∑
𝑖=1

X𝑖
⎞⎟
⎠

= 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

cov(X𝑖, X𝑗)

= 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝛾(𝑖 − 𝑗)

= 1
𝑛2 (𝑛𝛾(0) + 2(𝑛 − 1)𝛾(1) + 2(𝑛 − 2)𝛾(2) + ⋯ + 2𝛾(𝑛 − 1))

= 𝛾(0)
𝑛

⎛⎜
⎝

1 + 2
𝑛−1
∑
𝑖=1

𝑛 − 𝑖
𝑛 𝜌(𝑖)⎞⎟

⎠
.

(3.3)

When we perform estimation given by (3.3) on white noise, where 𝜌(ℎ) = 0 for ℎ ≠ 0, we get
var μ̂ = 𝛾(0)

𝑛 , so it follows the term 2 ∑𝑛−1
𝑖=1

𝑛−𝑖
𝑛 𝜌(𝑖) is a correction reflecting the impact of autocor-

relation.

Example 3.2. Let 𝑎 be a parameter, consider {ε𝑡} ∼ WN (0, 𝜎2/(1 + 𝑎2)) and define

X𝑡 = ε𝑡 + 𝑎ε𝑡−1.

We can compute 𝛾(0) = 𝜎2, 𝛾(1) = 𝑎𝜎2/(1 + 𝑎2) and 𝛾(ℎ) = 0 for ∣ℎ∣ > 1, thus 𝜌(1) = 𝑎/(1 + 𝑎2)
and 𝜌(ℎ) = 0 for ∣ℎ∣ > 1. Therefore this process has the same variance for all 𝑎 but the correlation
depends on 𝑎.
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When we now use the (3.3) to compute var μ̂, we get

var μ̂ = 𝜎2

𝑛 (1 + 2𝑛 − 1
𝑛

𝑎
1 + 𝑎2 ) ≈ 𝜎2

𝑛 (1 + 2 𝑎
1 + 𝑎2 )

for very large 𝑛. Thus var μ̂ → 0 as 𝑛 → ∞ – we can read this as meaning the more data we have,
the better. For example

• for 𝑎 = −0.5, var μ̂ ≈ 0.2𝜎2/𝑛,
• for 𝑎 = 0.5, var μ̂ ≈ 1.8𝜎2/𝑛.

We can make the observation, that negative correlation improves the estimation of 𝜇 – there will
be more oscillations back and forth across the mean. On the other hand, a positive correlation
reduces the accuracy of the estimate. Just as an illustration, we can simulate 500 realizations of
length 𝑛 = 100 with 𝜇 = 0 and compute μ̂ for each of them
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Tip

In the slides, there are two more examples:

• Random walk
• IID with additional noise

3.2.2 Consistency of the sample mean

We may recall the consistency of an estimator from previous courses.

Definition 3.3 (Consistency of an estimator). If ̂θ𝑛 is an estimator of some parameter 𝜃 from ob-
servations X1, … , X𝑛, it is called consistent when ̂θ𝑛 → 𝜃 in some appropriate way, as 𝑛 → ∞, for all
values of 𝜃.

The possible ways of convergence are:

• Almost surely ̂θ𝑛
a.s.→ 𝜃 : ̂θ𝑛(𝜔) → 𝜃 for all 𝜔 ∈ 𝐴, 𝑃(𝐴) = 1 (strong consistency)

• In mean square ̂θ𝑛
𝐿2
→ 𝜃 : 𝔼 (( ̂θ𝑛 − 𝜃)2) → 0 (for unbiased estimators, it holds if var ̂θ𝑛 → 0)

• In probability ̂θ𝑛
𝑃→ 𝜃 : 𝑃 (∣ ̂θ𝑛 − 𝜃∣ > 𝜀) → 0 for all 𝜀 > 0 (weak consistency; is true if conver-

gence is almost surely or if convergence in mean square holds)

Recall now that when {X𝑡} is stationary, we have computed in (3.3), after some changes, that

var μ̂ = var𝐗𝑛 = 1
𝑛 ∑

|𝑖|<𝑛
(1 − |𝑖|

𝑛 ) 𝛾(𝑖)

Theorem 3.1. If {X𝑡} is stationary with mean 𝜇 and autocovariance function 𝛾(ℎ) such that
∑∞

𝑖=−∞ ∣𝛾(𝑖)∣ < ∞, then as 𝑛 → ∞

𝑛var𝐗𝑛 →
∞
∑

𝑖=−∞
𝛾(𝑖).

In particular, var𝐗𝑛 → 0 and hence 𝐗𝑛
𝐿2
→ 𝜇.

The Theorem 3.1 follows from the expression

𝑛var𝐗𝑛 = ∑
|𝑖|<𝑛

(1 − |𝑖|
𝑛 ) 𝛾(𝑖)

by dominated convergence theorem (where the sum is thought of as an abstract integral with
respect to an appropriate measure).
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3.2.3 Approximate distribution

Consider a situation, where we want to say something about the true 𝜇 that the estimator μ̂ = 𝐗𝑛
fluctuates around. We can observe the magnitude of this fluctuation – the variance – but we want
to know (or approximate) the distribution.

Tip

Histograms suggest approximate normality of μ̂ = 𝐗𝑛 – they are symmetric and centered at
the true mean. This can be also deducted from the central limit theorem.

Theorem 3.2. If {X𝑡} is stationary, then under certain conditions 𝐗𝑛 is approximately (for large 𝑛) normal
with mean 𝜇 and variance 𝑛−1𝑣 = 𝑛−1 ∑∞

𝑖=−∞ 𝛾(𝑖), i.e.,

𝑛1/2(𝐗𝑛 − 𝜇) 𝑑⟶𝑛→∞ 𝒩 (0, 𝑣) .

Examples of certain conditions mentioned in Theorem 3.2 can be found in the slides. One such
condition is satisfied if

X𝑡 = 𝜇 +
∞
∑

𝑗=−∞
𝜓𝑗Z𝑡−𝑗,

where {Z𝑡} are iid with mean 0 and variance 𝜎2 ∈ (0, ∞), ∑∞
𝑗=−∞ ∣𝜓𝑗∣ < ∞ and ∑∞

𝑗=−∞ 𝜓𝑗 ≠ 0, we

have 𝑣 = 𝜎2 (∑∞
𝑗=−∞ 𝜓𝑗)

2
.

3.2.4 Confidence intervals for the mean

What’s more, we can construct intervals that cover the true mean with approximate probability
(1 − 𝛼, say). Naturally, we may consider symmetric intervals of the form

I = (μ̂ − 𝑑, μ̂ + 𝑑)

and we want to determine 𝑑 such that

𝑃(𝜇 ∈ I) = 1 − 𝛼.

If we recall that μ̂ is approximately 𝒩 (𝜇, 𝑣/𝑛), then

I = ⎛⎜
⎝

μ̂ −
𝑢1−𝛼/2𝑣1/2

𝑛1/2 , μ̂ +
𝑢1−𝛼/2𝑣1/2

𝑛1/2
⎞⎟
⎠

so practically, 𝑣 must be estimated. Ignoring autocorrelation, one would use the true (if known)
or sample variance in place of 𝑣 (can lead to too short (for positively correlated data) or too long
(for negatively correlated data) intervals).
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From the previous consideration, the need for the estimation of limiting (long-run) variance
arises

𝑣 =
∞
∑

ℎ=−∞
𝛾(ℎ),

but using the obvious estimator

𝛾̂(0) ⋅ ⎛⎜
⎝

1 + 2
𝑛−1
∑
𝑖=1

𝑛 − 𝑖
𝑛 ̂𝜌(𝑖)⎞⎟

⎠

here does not work – the estimation of ̂𝜌(𝑖) is unstable for high 𝑖 – they correspond to high-delay-
autocorrelations on which we have little data. As such, the Newey-West weighted estimator of the
form

𝛾̂(0) ⋅ ⎛⎜⎜
⎝

1 + 2
𝐾𝑛

∑
𝑖=1

𝑤𝑖,𝑛 ̂𝜌(𝑖)⎞⎟⎟
⎠

works with an appropriate truncation point 𝐾𝑛 and weights 𝑤𝑖,𝑛, e.g. 𝐾𝑛 = 4(𝑛/100)2/9, 𝑤𝑖,𝑛 =
1 − 𝑖

𝐾𝑛+1 .

Tip

In R we can use package sandwich (because these estimates are called sandwich estimates)
and function lrvar.
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4 Estimation of the autocorrelation function

There are multiple approaches when trying to determine the autocorrelation function 𝜌 of given
data. The first obvious way is to determine 𝜌 from the used model. While this works, their au-
tocorrelation 𝜌 is often very complicated. It should be also said that direct modeling of the au-
tocorrelation 𝜌 is difficult. The second way is determining the form of acf 𝜌 directly from data
without any underlying model assumptions. These estimates can be used for inference on the
relationships between the variables and for identifying a good model.

Therefore we are in a situation where we have observations X1, … , X𝑛 of a stationary series and let
our goal be to estimate

𝛾(ℎ) = cov(X𝑡, X𝑡+ℎ) = 𝔼 ((X𝑡 − 𝜇)(X𝑡+ℎ − 𝜇)) .

Naturally, we can use the empirical counterpart

γ̂(ℎ) =
∑𝑛−ℎ

𝑖=1 (X𝑖 − 𝐗)(X𝑖+ℎ − 𝐗)
𝑛 ,

where alternatively the denominator can be 𝑛 − ℎ or something similar, but 𝑛 is typically used in
the context of time series (for positive semi-definiteness and simplification of acf 𝜌). Now we can
estimate the autocorrelation function 𝜌(ℎ) = 𝛾(ℎ)

𝛾(0) by

̂ρ(ℎ) = γ̂(ℎ)
γ̂(0) =

∑𝑛−ℎ
𝑖=1 (X𝑖 − 𝐗)(X𝑖+ℎ − 𝐗)

∑𝑛
𝑖=1(X𝑖 − 𝐗)2

.

We can picture this with simulated white noise and its correlogram (plot of the estimated auto-
correlation function 𝜌), see Figure 4.1.
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Figure 4.1: Simulated white noise and its correlogram

4.1 Properties of the empirical autocovariance and autocorrelation

Under the non-restrictive assumptions, γ̂(ℎ) and ̂ρ(ℎ) consistently estimate 𝛾(ℎ), 𝜌(ℎ) respectively.
Furthermore, we would like to see whether the autocorrelations (bars in the correlogram) are
important or not. Therefore we will study the asymptotic distribution of

̂𝐜(ℎ) = (γ̂(0), γ̂(1), … , γ̂(ℎ))⊤

and
̂𝐫(ℎ) = ( ̂ρ(1), … , ̂ρ(ℎ))⊤

for 𝑛 → ∞.

Theorem 4.1. If {X𝑡} is a stationary process, then, under certain assumptions, for any fixed ℎ the vector
of estimated autocovariances ̂𝐜(ℎ) is approximately (for 𝑛 → ∞) normally distributed, i.e.,

𝑛1/2( ̂𝐜(ℎ) − 𝒄(ℎ)) 𝑑→ 𝒩ℎ+1(0, 𝑽),

where 𝒄(ℎ) = (𝛾(0), … , 𝛾(ℎ))⊤.

Note that the matrix 𝑽 can be given explicitly. In particular, if the process consists of uncorrelated
variables (𝛾(𝑗) = 0, 𝑗 ≠ 0), then 𝑽 is diagonal with 𝑉𝑗𝑗 = 𝛾(0)2 for 𝑗 > 0 (hence the components
of ̂𝐜(ℎ) are asymptotically independent). Examples of certain conditions are again given in the
slides, but one can remember that ARMA processes satisfy them
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4.2 Asymptotic qualities of the sample autocorrelation

Most often, we wish to make inferences about the dependence structure regardless of scale and
wewould like to have the asymptotic distribution for autocorrelations rather than autocovariances.
The sample autocovariances are (more or less) sums of variables (some central limit theorem is
behind the proof). The sample autocorrelation

̂ρ(𝑗) = γ̂(𝑗)
γ̂(0)

is a non-linear function (ratio) of the autocovariances. So the question is: Can we deduce the
asymptotic distribution of a function of an estimator if we have it for the estimator itself?

4.3 Limit theorems

Theorem 4.2 (Continuous mapping). Let 𝑔 be a continuous function. Then

• if R𝑛
𝑃⟶𝑛→∞ R, then 𝑔(R𝑛) 𝑃⟶𝑛→∞ 𝑔(R)

• or if R𝑛
𝑑⟶𝑛→∞ R, then 𝑔(R𝑛) 𝑑⟶𝑛→∞ 𝑔(R),

where the 𝑔 actually needs to only be continuous on a set 𝑋 such that 𝑃(R ∈ 𝑋) = 1.

Clearly, we can use the continuous mapping Theorem 4.2 when we have a random variable v̂𝑛,
which consistently estimates a variance of interest. Then v̂1/2

𝑛 consistently estimates the corre-
sponding standard deviation.

Theorem 4.3 (Slutsky’s). Let R𝑛
𝑑⟶𝑛→∞ R and S𝑛

𝑃⟶𝑛→∞ 𝑠, where 𝑠 is a non-random constant. Then

R𝑛S𝑛
𝑑⟶𝑛→∞ 𝑠R & R𝑛 + S𝑛

𝑑⟶𝑛→∞ R + 𝑠.

Again, a familiar use of Slutsky’s Theorem 4.3 might be if we have

𝑛1/2( ̂θ𝑛 − 𝜃) 𝑑⟶𝑛→∞ 𝒩 (0, 𝑣) , v̂𝑛
𝑃⟶𝑛→∞ 𝑣,

then
v̂−1/2

𝑛 𝑛1/2( ̂θ𝑛 − 𝜃) 𝑑⟶𝑛→∞ 𝒩 (0, 1) .
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4.4 Delta method

Let 𝛉̂𝑛 ∈ ℝ𝑝 be a random vector and assume it is asymptotically normal withmean 𝜽 and variance
matrix 𝑎−2

𝑛 𝑽 , i.e.
𝑎𝑛(𝛉̂𝑛 − 𝜽) 𝑑⟶𝑛→∞ 𝒩𝑝 (𝟎, 𝑽) .

Our goal is now to find the asymptotic distribution of 𝒈(𝛉̂𝑛), where 𝒈 ∶ ℝ𝑝 → ℝ𝑞. If 𝒈 is contin-
uously differentiable at 𝜽 with ∇𝒈(𝜽) = 𝜕

𝜕𝜽 𝒈(𝜽) ∈ ℝ𝑝×𝑞, then by Taylor series, Theorem 4.2 and
Theorem 4.3, we get

𝑎𝑛 (𝒈(𝛉̂𝑛) − 𝒈(𝜽)) = ∇𝒈(𝜽∗)𝑎𝑛(𝛉̂𝑛 − 𝜽) 𝑑→𝑛→∞ ∇𝒈(𝜽)𝒩𝑝(𝟎, 𝑽) = 𝒩𝑞 (𝟎, ∇𝒈(𝜽) ⋅ 𝑽 ⋅ ∇𝒈(𝜽)⊤) .

Here the “delta” stands for differentiation.

Tip

The delta method is a very useful general tool (bear inmind it is not limited to this particular
context).

4.5 Asymptotic qualities of the sample autocorrelation – cont.

Consider 𝒈(𝑥0, … , 𝑥ℎ) = (𝑥1/𝑥0, … , 𝑥ℎ/𝑥0)⊤, then

̂𝛒(ℎ) = 𝒈( ̂𝐜(ℎ)), 𝝆(ℎ) = 𝒈(𝒄(ℎ)),

and also 𝒈 has the ℎ × (ℎ + 1) Jacobi matrix of partial derivatives in form

∇𝒈(𝑥0, … , 𝑥ℎ) = 1
𝑥2

0

⎛⎜⎜⎜⎜⎜⎜
⎝

−𝑥1 𝑥0 0 ⋯ 0
−𝑥2 0 𝑥0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
−𝑥ℎ 0 0 ⋯ 𝑥0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

At 𝒙 = 𝒄(ℎ), this is ∇𝒈(𝒄(ℎ)) = 1
𝛾(0) (−𝒓(ℎ) 𝑰ℎ) with 𝑰ℎ denoting ℎ × ℎ identity matrix. Then ̂𝐫(ℎ)

is approximately normal with mean 𝒓(ℎ) and covariance matrix 𝑛−1∇𝒈(𝒄(ℎ))𝑽∇𝒈(𝒄(ℎ))⊤.

Theorem 4.4. If {X𝑡} is a stationary process, then, under certain assumptions, for any fixed ℎ the vector
of estimated autocorrelations ̂𝐫(ℎ) is approximately (for 𝑛 → ∞) normally distributed, i.e.

𝑛1/2( ̂𝐫(ℎ) − 𝒓(ℎ)) 𝑑→ 𝒩ℎ(𝟎, 𝑾),
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where 𝑾 is the ℎ × ℎ matrix with entries given by the Barlett formula

𝑊𝑖𝑗 =
∞
∑
𝑘=1

(𝜌(𝑘 + 𝑖) + 𝜌(𝑘 − 𝑖) + 2𝜌(𝑖)𝜌(𝑘)) ⋅ (𝜌(𝑘 + 𝑗) + 𝜌(𝑘 − 𝑗) + 2𝜌(𝑗)𝜌(𝑘)) .

For white noise (that is, 𝜌(𝑡) = 0, 𝑡 ≠ 0) we get 𝑊𝑖𝑗 = 1 for 𝑖 = 𝑗, 𝑊𝑖𝑗 = 0 otherwise.

4.5.1 Sample autocorrelation of white noise

Theorem 4.5. If {X𝑡} is a sequence of iid random variables, then, under certain assumptions, for any ℎ the
vector of estimated autocorrelations ̂𝐫(ℎ) is approximately (for 𝑛 → ∞) normally distributed with mean
zero, variances 1/𝑛 and independent components, i.e.

𝑛1/2 ̂𝐫(ℎ) 𝑑⟶𝑛→∞ 𝒩ℎ(0, 𝑰ℎ).

It should be clear that Theorem 4.5 follows from Theorem 4.4. This allows us to test certain hy-
potheses because ̂ρ(𝑗)∼̇𝒩 (0, 1/𝑛) under independence. Hence ̂ρ(𝑗) should be between −1.96/√𝑛
and 1.96/√𝑛 with approximate probability 95 % under independence

4.6 Inference about the autocorrelation structure

Figure 4.2: Example correlogram

Here in Figure 4.2, the limits are at ±1.96/√𝑛. At lag 𝑗, they indicate the rejection regions for
testing the null hypothesis of no autocorrelation against the alternative that 𝜌(𝑗) ≠ 0. When the
estimated acf is between the blue dotted lines, i.e. in the confined region, we do not reject the null
hypothesis. Due to the approximate independence, one can expect 𝛼 × 100% false rejections on
average (e.g., 1 out of 20).
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Caution

Although R calls it confidence intervals, it is more correctly a region of rejection/validity of
sorts.

4.6.1 Asymptotic distribution of estimated acf of a moving average process

Consider white noise {ε𝑡} and define

X𝑡 = ε𝑡 + 𝜃1ε𝑡−1 + ⋯ + 𝜃𝑞ε𝑡−𝑞,

for which we have already shown that 𝜌(𝑗) = 0 for 𝑗 > 𝑞. Thus we can test

𝐻0 ∶ 𝜌(𝑗) = 0, 𝑗 ≥ 𝑞 + 1 vs 𝐻1 ∶ 𝜌(𝑞 + 1) ≠ 0, 𝑗 ≥ 𝑞 + 2

and suchwewill reject ̂ρ(𝑞+1) outside the limits ±1.96𝑛−1/2(1+2 ∑𝑞
𝑘=1 ̂ρ(𝑘)2)1/2. Note that there

are wider limits because we put no restrictions on 𝜌(𝑗), 𝑗 ≤ 𝑞.

Example 4.1. Given a specific example

X𝑡 = ε𝑡 + 0.6ε𝑡−1 + 0.9ε𝑡−2,

we get, with the following code, these results:

set.seed(1)
x = filter(rnorm(202),

sides=1,
filter=c(1,.6,.9),
method="convolution"

)[-(1:2)]
acf(x,ci.type="ma",lag.max=20)
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4.6.2 The Ljung-Box test

Let us assume our goal is to test the global hypothesis of no autocorrelation. Begin with a null
hypothesis 𝐻0 ∶ 𝜌(ℎ) = 0 for all ℎ = 1, 2, … , 𝐿 for 𝐿 ∈ ℕ and alternative 𝐻1 ∶ ∃ℎ ∈ {1, … , 𝐿}, such
that 𝜌(ℎ) ≠ 0. We use the Box-Pierce test statistic

Q = 𝑛( ̂ρ(1)2 + ⋯ + ̂ρ(𝐿)2).

Now under 𝐻0, Q is approximately 𝜒2
𝐿 distributed – as such we will reject 𝐻0 for Q > 𝑞𝐿(1 − 𝛼)

where 𝑞𝐿(1 − 𝛼) is (1 − 𝛼)-quantile of 𝜒2
𝐿. In truth, the Ljung-Box test statistic reads (more precise

for smaller values)

Q∗ = 𝑛(𝑛 + 2) ( ̂ρ(1)2

𝑛 − 1 + ⋯ + ̂ρ(𝐿)2

𝑛 − 𝐿 ) ,

which has the same approximate distribution (Q∗ is much closer to chi-square than Q)

Example 4.2. Consider the example (as an illustration) where themaximumdelay of 10 was used:

set.seed(1)
x = rnorm(100)
Box.test(x,lag=10,type="Ljung-Box")

Box-Ljung test

data: x
X-squared = 6.0721, df = 10, p-value = 0.8092

acf(x)
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Tip

We can’t choose too big a lag, because we would have too many parameters. As a heuristics,
lag should be approximately < 𝑛

10

4.6.3 Maximum correlation test

We shall now aim to test whether any 𝜌 at lags up to 𝐿 is significant. We might have an idea to use
single tests and combine them in

T = max (∣ ̂ρ(1)∣ , … , ∣ ̂ρ(𝐿)∣) .

We can then look for 𝑐 such that 𝑃(T > 𝑐) ⋅= 𝛼 under 𝐻0 and as such, ̂ρ(1), … , ̂ρ(𝐿) are approxi-
mately iid under 𝐻0. Thus, also under 𝐻0,

1 − 𝛼 ⋅= 𝑃(T ≤ 𝑐) = 𝑃 (max (∣ ̂ρ(1)∣ , … , ∣ ̂ρ(𝐿)∣) ≤ 𝑐)

=
𝐿

∏
𝑗=1

𝑃 (∣ ̂ρ(𝑗)∣ ≤ 𝑐)

=
𝐿

∏
𝑗=1

(Φ(𝑛1/2𝑐) − Φ(−𝑛1/2𝑐))

= (2Φ(𝑛1/2𝑐) − 1)𝐿 .

Hence the critical value is 𝑐 = 𝑛−1/2Φ−1 ((1 − 𝛼)1/𝐿). Regions for testing multiple autocorrela-
tions at once have boundaries at ±𝑐 (whereas usual rejection regions in the correlogram are for
tests about single autocorrelations).

set.seed(2); n = 200; x = rnorm(n); L = 20
# standard rejection limit for single tests
qnorm(.975)/sqrt(n)

[1] 0.1385904

# rejection regions corrected for multiple testing
(max.lim = qnorm(.975^(1/L))/sqrt(n))

[1] 0.2135257
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acf(x,
lag.max=L,
main="",
ylim=c(-.25,1)

)
abline(h=c(-1,1)*max.lim,

col=2,
lty=2

)
legend("topright",

legend=c("Pointwise tests","Multiple testing"),
col=c(4,2),
lty=2,
bty="n"

)
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4.6.4 Problems with acf estimation

Surely, the 𝜌 estimation and the correlogram make sense for stationary data. Now consider iid
white noise {ε𝑡} and define X𝑡 = 𝑡 + ε𝑡. Then X𝑡 are independent variables, hence uncorrelated. If
we directly apply the correlogram, we get misleading results, see Figure 4.3.
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Figure 4.3: Misleading correlogram

As this example shows, trends/deterministic components should be accounted for: e.g., model
them by regression. Now consider the random walk X𝑡 = ∑𝑡

𝑗=1 ε𝑗 (this time series is non-
stationary). Directly applying the correlogram to X𝑡 indicates a complicated autocorrelation
structure, see Figure 4.4.

Figure 4.4: Complicated correlation structure for random walk

On the other hand, applying the correlogram to the differentiated series {X𝑡 − X𝑡−1} suggests a
much simpler structure, see Figure 4.5.

Figure 4.5: Simple correlation structure from differences

Therefore transient trends should be accounted for, e.g., by differencing.
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5 Regression Methods for Deterministic
Components

5.1 Linear regression models

Observable processes follow some deterministic patterns but randomly deviate from them. From
these assumptions, we may write our time series as a model plus noise decomposition

X𝑡 = Deterministic𝑡 + Stochastic𝑡.

Furthermore, the deterministic part can be modeled as follows

Deterministic𝑡 = Trend𝑡 + Seasonality𝑡 ( + OtherVariablesEffects𝑡)

and the stochastic component as (we will see models of this kind, e.g. ARMA, later)

Stochastic𝑡 = PredictableVariation𝑡 + WhiteNoise𝑡.

Note

The above decompositions are schematic, and not always applicable. (non-stationarity, non-
linearity, changing variability etc.)

We shall now look at parametric modeling of the deterministic part.

5.1.1 Examples

Example 5.1 (Annual global temperature series). With the following code, we can plot Figure 5.1,
where a possible monotonic trend (linear, maybe quadratic) can be seen.

data(gtemp,package="astsa")
plot(gtemp,type="o",ylab="Global temperature")
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Figure 5.1: Annual global temperature

Example 5.2 (Monthly carbon dioxide levels). Now, consider the following time series, in which
one can see a clear monotonic trend (linear) and seasonality.

data(co2,package="TSA")
plot(co2,type="o",ylab="CO2")
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Figure 5.2: CO2 levels

Example 5.3 (Monthly temperatures). Consider the following time series – this time, no obvious
trend is visible, but seasonality plays a big role.
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data(tempdub,package="TSA")
plot(tempdub,type="o",ylab="Temperature")
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5.1.2 Linear models for trends in time

Consider a model
X𝑡 = 𝜇𝑡 + U𝑡,

where 𝜇𝑡 = 𝔼 X𝑡 is the mean, U𝑡 are residuals 𝔼 U𝑡 = 0. Models for the trend should be sim-
ple, model only obvious trends (such as monotonic) and seasonality. Unclear/varying/transient
features (stochastic trends) are often handled by differencing, for example

• linear trend: 𝜇𝑡 = 𝛽0 + 𝛽1𝑡;
• quadratic trend: 𝜇𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2.

Tip

We usually do not use higher-order polynomials (a complicated graph of the whole process
may likely be due to stochastic trends).

Example 5.4. As introduced earlier, we can use the following code to model with deterministic
components the Example 5.1 data:

gtemp.m1 = lm(gtemp~time(gtemp))
gtemp.m2 = lm(gtemp~time(gtemp)+I(time(gtemp)^2))
par(mfrow=c(1,2))
plot(gtemp,ylab="Global temperature")
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abline(gtemp.m1)
plot(gtemp,ylab="Global temperature")
lines(as.vector(time(gtemp)),fitted(gtemp.m2))
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Figure 5.3: Models with deterministic parts for global temperatures

Now, we shall look at the summary statistics of the used models.

summary(gtemp.m2)

Call:
lm(formula = gtemp ~ time(gtemp) + I(time(gtemp)^2))

Residuals:
Min 1Q Median 3Q Max

-0.300105 -0.080650 0.004134 0.074619 0.280003

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.647e+02 2.916e+01 5.647 1.02e-07 ***
time(gtemp) -1.752e-01 3.000e-02 -5.840 4.12e-08 ***
I(time(gtemp)^2) 4.653e-05 7.714e-06 6.032 1.65e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1108 on 127 degrees of freedom
Multiple R-squared: 0.8065, Adjusted R-squared: 0.8035
F-statistic: 264.7 on 2 and 127 DF, p-value: < 2.2e-16
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But can we trust these standard errors, confidence intervals and 𝑝-values? In the theory of linear
regression models, we mostly assumed independence. We can look at the residuals

par(mfrow=c(1,2))
plot(as.vector(time(gtemp)),

resid(gtemp.m2),
type="l",
xlab="Time",
ylab=""

)
acf(resid(gtemp.m2),

main=""
)
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Figure 5.4: Residuals and it’s correlogram

As can be seen in Figure 5.4, the residuals are strongly autocorrelated and the standard errors,
𝑝-values are probably incorrect (they are computed under the assumption of iid errors).

5.1.3 Linear models for trends and seasonality

Again, consider a model X𝑡 = 𝜇𝑡 + U𝑡, where 𝜇𝑡 = 𝔼 X𝑡 is the mean, U𝑡 are residuals 𝔼 U𝑡 = 0.
Now we can include the seasonal effect. Consider 𝑠 seasons (e.g. 𝑠 = 12), each having its own
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level. Then the model with linear trend and seasonal indicators is of form

𝜇𝑡 = 𝛽0 + 𝛽1𝑡 +
𝑠

∑
𝑗=2

𝛼𝑗𝟙𝑡=𝑘𝑠+𝑗

=

⎧{{{
⎨{{{⎩

𝛽0 + 𝛽1𝑡, 𝑡 = 1, 𝑠 + 1, 2𝑠 + 1, …
𝛽0 + 𝛽1𝑡 + 𝛼2, 𝑡 = 2, 𝑠 + 2, 2𝑠 + 2, …
⋮
𝛽0 + 𝛽1𝑡 + 𝛼𝑠, 𝑡 = 𝑠, 2𝑠, 3𝑠, … ,

where season 1 is the reference level and 𝛼2, … , 𝛼𝑠 are the differences against it.

Using the following code, we get the model seen in Figure 5.5.

mth = factor(cycle(co2))
co2.m1 = lm(co2~time(co2)+mth)
plot(co2,type="p")
lines(as.vector(time(co2)),fitted(co2.m1))
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Figure 5.5: Time series CO2 model

Or we can consider other equivalent models.

lm(co2~time(co2)+mth)

Call:
lm(formula = co2 ~ time(co2) + mth)
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Coefficients:
(Intercept) time(co2) mth2 mth3 mth4 mth5
-3290.5412 1.8321 0.6682 0.9637 1.2311 1.5275

mth6 mth7 mth8 mth9 mth10 mth11
-0.6761 -7.2851 -13.4415 -12.8205 -8.2604 -3.9277

mth12
-1.3367

lm(co2~time(co2)-1+mth)

Call:
lm(formula = co2 ~ time(co2) - 1 + mth)

Coefficients:
time(co2) mth1 mth2 mth3 mth4 mth5 mth6

1.832 -3290.541 -3289.873 -3289.577 -3289.310 -3289.014 -3291.217
mth7 mth8 mth9 mth10 mth11 mth12

-3297.826 -3303.983 -3303.362 -3298.802 -3294.469 -3291.878

Also, we can look at the residuals and last, but not least, we can plot fitted values of our 𝐶𝑂2
model.

par(mfrow=c(1,2))
plot(as.vector(time(co2)),

resid(co2.m1),
type="l",
xlab="Time",
ylab=""

)
acf(resid(co2.m1),

main=""
)
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Notice that there are parallel monthly lines with different distances and parallel (almost equidis-
tant) profiles within years

5.1.4 Seasonality via harmonic components

Consider the following time series from Example 5.3.

Here, waves look like cosines (unlike in the CO2 series), so our idea might be to model the de-
terministic component with a cosine wave with known frequency (e.g., 𝑓 = 1

12) and unknown
amplitude and phase

𝜇𝑡 = 𝛽0 + 𝛽1𝑡 + 𝑎 cos (2𝜋𝑓 𝑡 + 𝜑) .

Now, we have to estimate intercept 𝛽0, slope 𝛽1, amplitude 𝑎, phase 𝜑, but the model is non-linear
in 𝜑, which would be difficult to estimate. From trigonometry we get

𝑎 cos (2𝜋𝑓 𝑡 + 𝜑) = 𝛼1 cos(2𝜋𝑓 𝑡) + 𝛼2 sin(2𝜋𝑓 𝑡),
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where 𝛼1 = 𝑎 cos(𝜑), 𝛼2 = − sin(𝜑). This transforms our model to

𝜇𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛼1 cos(2𝜋𝑓 𝑡) + 𝛼2 sin(2𝜋𝑓 𝑡)

and this model is linear in parameters (and we have 4 parameters to estimate: 𝛽1, 𝛽2, 𝛼1, 𝛼2). It
is good to use known, logical frequencies for deterministic modeling (e.g. 𝑓 = 1/12). Compared
with seasonal indicators we have less flexibility, more restrictive, but also fewer parameters.

Related topics

More components, continuum of components, spectral analysis, relative importance of com-
ponents, periodogram, FFT, random cosine wave stationary model, …

Example 5.5. The derived model yields Figure 5.6

tempdub.harm = lm(tempdub~time(tempdub)
+cos(2*pi*time(tempdub))
+sin(2*pi*time(tempdub))

)
plot(tempdub,type="p")
lines(as.vector(time(tempdub)),

fitted(tempdub.harm)
)
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Figure 5.6: Harmonic model

We can now look at the fitted values in the harmonic model for monthly temperatures.
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tempdub.harm

Call:
lm(formula = tempdub ~ time(tempdub) + cos(2 * pi * time(tempdub)) +

sin(2 * pi * time(tempdub)))

Coefficients:
(Intercept) time(tempdub)

23.85687 0.01138
cos(2 * pi * time(tempdub)) sin(2 * pi * time(tempdub))

-26.70699 -2.16621

5.2 Regression estimators and their properties

Consider a model X𝑡 = 𝜇𝑡 + U𝑡 with

𝜇𝑡 =
𝑝

∑
𝑗=1

𝜷𝑗𝑍𝑡𝑗, 𝑡 = 1, 2, …

Presume we have observations at 𝑡 = 1, … , 𝑛. We write 𝜇 = 𝒁𝜷 in matrix notation (𝒁 is 𝑛 × 𝑝,
assume full rank 𝑝). Typically, columns of 𝒁 are 𝟏 (intercept), 𝑡 (linear trend), possibly 𝑡2, seasonal
indicators or sines and cosines, and maybe other explanatory variables (assume non-random).
Now our goal is to estimate 𝜷 by (ordinary) least squares (OLS or LS): minimize

∥𝐗 − 𝒁𝜷∥2
2 =

𝑛
∑
𝑡=1

(X𝑡 − 𝒁⊤
𝑡 𝜷)2.
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Although the textbook solution is
̂𝜷 = (𝒁⊤𝒁)−1𝒁⊤𝐗,

we typically use QR-decomposition, i.e. we factorize 𝒁 = 𝑸𝑹, where 𝑸 (𝑛 × 𝑝) has orthonormal
columns and 𝑹 is (𝑝 × 𝑝) upper triangular, so the objective becomes

∥𝐗 − 𝒁𝜷∥2
2 = ∥𝐗 − 𝑸𝑹𝜷∥2

2 = ∥𝐗 − 𝑸𝜸∥2
2 ,

where 𝜸 = 𝑹𝜷. Since the transformation 𝜸 = 𝑹𝜷 is one-to-one (𝑹 has full rank), we can first
minimize ∥𝐗 − 𝑸𝜸∥2

2 over 𝜸 ∈ ℝ𝑝 to get 𝜸̂ and the solve 𝑹𝜷 = 𝜸̂ to get ̂𝜷.

Minimizing ∥𝐗 − 𝑸𝜸∥2
2 is easy because 𝑸 has orthonormal columns, thus 𝛾̂𝑗 = ⟨𝐗, 𝑸⋅,𝑗⟩. Also,

solving 𝑹𝜷 = 𝜸̂ is cheap because 𝑹 is triangular (back-substitution can be used).

5.2.1 Properties of the OLS estimator

Surely ̂𝜷 is unbiased (in spite of ignoring dependence)

𝔼 ̂𝜷 = (𝒁⊤𝒁)−1𝒁⊤(𝔼 𝐗) = 𝜷.

Moreover, if 𝐔 is stationary with cov𝐔 = 𝜞 = 𝜎2𝐑, the variance is

var ̂𝜷 = (𝒁⊤𝒁)−1𝒁⊤𝜞𝒁(𝒁⊤𝒁)−1

= 𝜎2(𝒁⊤𝒁)−1𝒁⊤𝐑𝒁(𝒁⊤𝒁)−1.
(5.1)

Note

Recall the form var ̂𝜷 = 𝜎2(𝒁⊤𝒁)−1 for 𝐑 = 𝑰 for the iid case in (5.1).

Thus the usual standard errors, confidence intervals, and 𝑝-values will be incorrect under auto-
correlation. Often, the inference about the deterministic components is not the goal, we just want
to remove the trend and focus on the stochastic part, then move on to prediction.

One possible remedy could be the sandwich estimators

var ̂𝜷 = (𝒁⊤𝒁)−1𝒁⊤ ̂𝜞𝒁(𝒁⊤𝒁)−1

where ̂𝜞 is an estimator such that 𝒁⊤ ̂𝜞𝒁/𝑛 consistently estimates the limit of 𝒁⊤𝜞𝒁/𝑛 (similar to
long-run variance in mean estimation), see sandwich::vcovHAC.
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5.2.2 Generalized least squares

Surely, we can use the (assumed) correct covariance matrix derived earlier for estimation. Then
we get generalized least squares (GLS), where we solve

min
𝜷

(𝐗 − 𝒁𝜷)⊤𝜞−1(𝐗 − 𝒁𝜷),

which is motivated by

• Gaussian likelihood: maximize the likelihood for 𝐗 ∼ 𝒩𝑛(𝒁𝜷, 𝜞)

(2𝜋)−𝑘/2(det 𝜞)−1/2 exp (−(𝐗 − 𝒁𝜷)⊤𝜞−1(𝐗 − 𝒁𝜷)/2) ;

• Standardization and OLS: surely 𝜞−1/2𝐗 has mean 𝜞−1/2𝒁𝜷 and variance 𝜞−1/2𝜞𝜞−1/2 = 𝑰,
hence 𝜞−1/2𝐗 are uncorrelated. As such we can solve the OLS minimization.

(𝜞−1/2𝐗 − 𝜞−1/2𝒁𝜷)⊤ (𝜞−1/2𝐗 − 𝜞−1/2𝒁𝜷)
= (𝐗 − 𝒁𝜷)⊤ 𝜞−1/2 (𝐗 − 𝒁𝜷) .

All in all, the textbook solution is now

̂𝜷 = (𝒁⊤𝜞−1𝒁)−1 𝒁⊤𝜞−1𝐗.

Note that the difficulty with GLS is the need to know 𝜞 , but we can specify a model for 𝜞 (or 𝐑)
up to some parameters and estimate both 𝜷 and the parameters of 𝜞 by maximum likelihood. As
an example, for moving average errors, one can use a banded matrix.

How do we know that the correlation model was correctly specified? The residuals should look
like white noise (in particular, no correlation). The function gls in the R package nlme can do
this estimation but it is primarily designed for something else (grouped data), we will see tools
that are more appropriate for time series

5.2.3 Transformations

Some of the common problems – think heteroskedasticity (e.g. variance increases with mean), non-
linearity, non-stationarity or non-normality (skewness) – can be addressed using transformations to
make residuals look stationary andnormal. After transforming our data, we thenfit the regression
models to the transformed series. Most commonly, a log or square root transformations are used,
e.g.

X𝑡 = 𝑚𝑡U𝑡 ↦ logX𝑡 = log(𝑚𝑡) + log(U𝑡)
where a non-stationary, heteroskedastic series is transformed to a trend part plus stationary part
(if U𝑡 is stationary). In general, the log transformation isn’t the only possible one in this case (that
gives us linearity and stationarity). Consider a transformation 𝑔 such that

X𝑡 ↦ 𝑔(X𝑡) = 𝑚∗
𝑡 + U∗

𝑡 ,

where 𝑔 may be, for example, the Box-Cox transformation, see Definition 5.1.
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Definition 5.1 (Box-Cox Transformation). Let X𝑡 = 𝑚𝑡U𝑡 be a time series and 𝑔 the Box-Cox
transformation given by

𝑔(𝑥) = 𝑥𝜆 − 1
𝜆

for 𝜆 > 0 and 𝑔(𝑥) = log 𝑥 for 𝜆 = 0.

Tip

Here 𝜆 = 0 corresponds to a multiplicative transformation and 𝜆 = 1 to an additive one.

But now a question arises how and when do Box-Cox transformations work? Suppose that X𝑡 > 0
and that

𝔼 X𝑡 = 𝜇𝑡 & varX𝑡 = 𝜎2𝑣(𝜇𝑡).

Now consider the Taylor expansion

𝑔(X𝑡) ≈ 𝑔(𝜇𝑡) + 𝑔′(𝜇𝑡)(X𝑡 − 𝜇𝑡)

and compute expectations and variances on both sides to get

𝔼 𝑔(X𝑡) ≈ 𝑔(𝜇𝑡), var 𝑔(X𝑡) ≈ 𝑔′(𝜇𝑡)2 varX𝑡 = 𝑔′(𝜇𝑡)2𝜎2𝑣(𝜇𝑡).

To further stabilize the variance, i.e. make it independent of the mean, use 𝑔 such that 𝑔′(𝑥) =
𝑣− 1

2 (𝑥). As can be shown, the Box-Cox transformations do this for 𝑣(𝑥) = 𝑐𝑥2(1−𝜆) – in other
words when the standard deviation of 𝑋𝑡 is proportional to 𝜇1−𝜆

𝑡 .

Note

Using this we get a log transformation for the variance quadratic in the mean and square root
for the variance linear in the mean.

5.3 Nonparametric regression techniques

Consider a time series describing global temperature
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Figure 5.7: Global temperature series

Here the “trend” does not really look either quadratic or linear (or simple in any way), but we
would still like to estimate the central trajectory and remove the fluctuations. And for this wemay
use nonparametric smoothing.

Our goal now is to take a time series and “extract” its main shape while removing the noise. Thus,
suppose we can decompose the series into

X𝑡 = 𝑇𝑡 + E𝑡, (5.2)

where 𝑇𝑡 is the trend component and 𝐸𝑡 are random, irregular fluctuations (noise) and we want
to estimate 𝑇𝑡. Previously we used linear regression, e.g. we set 𝑇𝑡 = 𝑎 + 𝑏𝑡, but we can allow 𝑇𝑡
to vary more flexibly. Instead of assuming a parametric (e.g., linear) model for the trend, we will
estimate it nonparametrically as a general function of 𝑡.

Note

This process hasmany applications, e.g. exploratory analysis, graphics, detrending or simply
the preparation for the analysis of the random part.

5.3.1 Moving averages

As mentioned before, our goal is to remove fluctuations and preserve the “central” values of a
given time series. Naturally, we can assume that locally the series values fluctuate around a similar
level. The fluctuations have a zero mean and as such should cancel out when averaged (locally).
Thus we consider a moving average smoother, see Definition 5.2.
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Definition 5.2 (Moving average Smoother). Moving average smoother of order 𝑚 = 2𝑘 + 1 is a
transformed series

T̂𝑡 = 1
𝑚

𝑘
∑

𝑗=−𝑘
X𝑡+𝑗,

or for 𝑚 = 2𝑘 even, we can use

T̂𝑡 = 1
2𝑚X𝑡−𝑘 + 1

𝑚X𝑡−𝑘+1 + ⋯ + 1
𝑚X𝑡+𝑘−1 + 1

2𝑚𝑋𝑡+𝑘.

As a terminology side note, “moving average” is used for the above estimator of the trend as
well as for the model based on the moving average of white noise. Recall the global tempera-
ture time series from Figure 5.7, on which we can demonstrate the moving average smoother, see
Figure 5.8.

library(forecast)

Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo

plot(gtemp,type="o",ylab="Global temperature")
lines(ma(gtemp,15),col=2)
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Figure 5.8: Relatively smooth trajectory estimating the global tendency

Furthermore, we can compare the effect of different orders of the moving average.
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5.3.2 Kernel smoothing

The aforementioned moving average smoother, see Definition 5.2, locally averages observations,
but all are given the same weight. We could generalize this concept – consider moving weighted
averages with weights depending on the proximity to the time point of interest.

Definition 5.3 (Kernel Smoothing (Nadaraya-Watson estimator)). The Kernel smoothing uses

T̂𝑡 =
𝑛

∑
𝑖=1

𝑤𝑖(𝑡)X𝑖,

where the weights 𝑤𝑖 are defined as

𝑤𝑖(𝑡) =
𝐾 ( 𝑖−𝑡

ℎ )

∑𝑛
𝑗=1 𝐾 ( 𝑗−𝑡

ℎ )
.

Here 𝐾 is a kernel function, e.g. 𝐾(𝑧) = (2𝜋)− 1
2 exp−𝑧2

2 , and ℎ is the bandwidth that controls
the smoothness.

Tip

For large ℎ, 𝑤𝑖(𝑡) is large even when 𝑖 is far from 𝑡, and thus 𝑤𝑖(𝑡) is “flat”, averaging relies
on distant observations and there is a possibility of over-smoothing.
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On the other hand, for small ℎ, 𝑤𝑖(𝑡) is large only when 𝑖 is close to 𝑡, and thus 𝑤𝑖(𝑡) drops
quickly. Averaging then depends mainly on nearby observations but under-smoothing is
possible.

If we again apply this method to our example, see Figure 5.7, we get Figure 5.9.

plot(gtemp,type="o",ylab="Global temperature")
lines(ksmooth(

time(gtemp),
gtemp,
kernel="normal",
bandwidth=10

),
col=2

)
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Figure 5.9: Trend approximated with kernel smoothing

What’s more, we can also compare the effect of bandwidth on the estimate.
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Figure 5.10: Effect of bandwidth on kernel smoothing

As for the properties of the kernel smoother (see Definition 5.3), T̂𝑡 in fact estimates the smoothed
version of 𝑇𝑡 taken from (5.2) (also see Definition 5.2) and

𝔼 T̂𝑡 =
𝑛

∑
𝑖=1

𝑤𝑖(𝑡)𝑇𝑖.

As T̂𝑡 is a linear function of data, the variance of the kernel smoother is easy to find, if the autoco-
variance 𝛾 of the series is known (e.g. in iid case). Then

var T̂𝑡 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑤𝑖(𝑡)𝑤𝑗(𝑡)𝛾(𝑖, 𝑗).

In time series analysis, we typically use kernel smoothing as an exploratory technique, when we
are notmuch interested in the standard errors, confidence intervals etc. There is also a bias-variance
tradeoff :

• large ℎ gives us high bias but low variance;
• small ℎ gives us low bias but high variance.

Andwhile automatic procedures to find the best compromise do exist, they often assume iid errors
and risk possible overfitting with positive autocorrelation, i.e., series of similar values.
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Note

There are, of course, more advanced kernel smoothing techniques:

• locally polynomial fitting (Nadaraya–Watson is locally constant),
• locally adaptive choice of ℎ (ℎ depending on 𝑡),
• etc.

5.3.3 Other smoothing techniques

Although we don’t have the time to explain and show the following methods in this course, one
can also use

• Splines

– Express 𝑇𝑡 as a linear combination of spline functions;
– Estimate by least squares – possibly with penalization for “roughness” (to avoid fitting

the data instead of the trend);

• Lowess (locally weighted scatterplot smoothing);
• Loess;
• Nearest neighbors.
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6 Decomposition Techniques and Simple
Prediction Methods

6.1 Decomposition

Consider a series with different components, see Figure 6.1 for examples.

Figure 6.1: Examples of series with different components

As we did earlier, our goal will be to decompose X𝑡 as

X𝑡 = 𝑓 (𝑇𝑡, 𝑆𝑡, E𝑡)

where

• 𝑇𝑡 is the trend,
• 𝑆𝑡 is the seasonal component (length of season 𝑠, e.g. 𝑠 = 12),
• E𝑡 is the random component (remainder, irregular, error term).
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All in all, our approach is similar to what we’ve used before, but now we allow the components
to vary in a flexible, non-parametric way. As examples of this decomposition, consider

• Additive decomposition
X𝑡 = 𝑇𝑡 + 𝑆𝑡 + E𝑡;

• Multiplicative decomposition
X𝑡 = 𝑇𝑡𝑆𝑡E𝑡.

In general, the goal of the decomposition is to aid us in exploratory analysis or it can serve as a
preliminary step before the analysis of the random component.

6.1.1 Classical Decomposition

Consider a “classical” additive decomposition of X𝑡 as

X𝑡 = 𝑇𝑡 + 𝑆𝑡 + E𝑡,

where 𝑇𝑡 is allowed to change in time flexibly. Moreover, 𝑆𝑡 is periodic with period 𝑠 with the
seasonal indices presumed to be constant in time. So our modeling procedure goes:

1. estimate 𝑇𝑡 by the moving average of order 𝑠 to obtain T̂𝑡;
2. calculate the de-trended X𝑡 − T̂𝑡;
3. estimate the seasonal component for each season (e.g. month) by averaging the de-trended

values for that season. Then we adjust them so that they add up to zero, by which we pro-
duce ̂S𝑡;

4. calculate the remainder component Ê𝑡 = X𝑡 − T̂𝑡 − ̂S𝑡.

Example 6.1. As an example, consider housing sales and the following code:

data(hsales, package="fma")
plot(decompose(hsales,type="additive"))
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Figure 6.2: Classical decomposition of housing sales

6.1.2 Multiplicative Classical Decomposition

This time we decompose X𝑡 as
X𝑡 = 𝑇𝑡𝑆𝑡E𝑡

with the same interpretation of the used symbols. Our modeling process stays almost the same
as well:

1. estimate T𝑡 by the moving average of order 𝑠 to obtain T̂𝑡;
2. calculate the de-trended X𝑡/T̂𝑡;
3. estimate the seasonal component for each season (e.g. month) by averaging the de-trended

values for that season. Then we adjust them so that they add up to zero, by which we pro-
duce ̂S𝑡;

4. calculate the remainder component Ê𝑡 = X𝑡
T̂𝑡Ŝ𝑡

.

Example 6.2. As an example, this time consider electricity production data.
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Figure 6.3: Multiplicative classical decomposition of electricity production

6.1.3 Problems with classical decomposition

As we might have noticed, there are certain problems with the classical decomposition. For one,
due to the moving average estimation, the trend is not available at the beginning and end of our
data (roughly at the first and last 𝑠/2 time points). Also, we assumed constant seasonal effects,
which may be OK for some series but not for all, see Figure 6.4.

Figure 6.4: Non-consant seasonal effect

Basically, the latter problem boils down to the question of if the trend is allowed to vary flexibly
for exploratory analysis, why not the seasonals?
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6.1.4 STL Decomposition

Once again, consider additive decomposition of X𝑡 as

X𝑡 = 𝑇𝑡 + 𝑆𝑡 + E𝑡,

though this time we estimate 𝑇𝑡, 𝑆𝑡, E𝑡 using STL (Seasonal and Trend decomposition using Loess).
Hence now, 𝑇𝑡 is allowed to change in time in a flexible way, and the smoothness of the trend com-
ponent can be controlled. Also, 𝑆𝑡 is nowallowed to change in time flexibly (not only periodically),
and the rate of change can also be controlled. Both time-varying functions are estimated nonpara-
metrically by loess, which is a nonparametric regression technique similar to kernel smoothing.

Important

STL decomposition is only additive, so one needs to use log or Box-Cox (see Definition 5.1)
transformations for different types of decompositions.

Recall the classical decomposition of housing sales, see Example 6.1. We nowdecompose the same
data using STL with the following code:

plot(stl(hsales,s.window=13))
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Figure 6.5: Housing sales decomposed with STL

In general, STL decomposition first estimates the trend by loess. Then it de-trends the series and
applies loess smoothing to each seasonal sub-series. It follows by removing the seasonal com-
ponent. All of these steps are iterated until a satisfying result is achieved (or another stopping
condition is met).

60



(a) s.window = 11 (b) s.window = 19

Figure 6.6: Comparison of different seasonal smoothing parameters for STL

(a) t.window = 15 (b) t.window = 40

Figure 6.7: Comparison of different trend smoothing parameters for STL
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6.1.5 Comparison of Classical and STL Decompositions

When comparing these two methods on the log-transformed electricity data, see Example 6.2, we
see that the classical decomposition fails to capture the decrease of seasonal effects at the end and
as such, they propagate to the remainder component. What’smore, the remainder from STL looks
far more random and irregular, compared to the one produced by the classical decomposition.

(a) Classical decomposition (b) STL decomposition

Figure 6.8: Comparison of classical and STL decompositions of log-transformed electricity pro-
duction data

6.2 Exponential Smoothing

Let us now assume our goal is to predict (forecast) future values as a function of past observations.
Therefore we need to incorporate changing the level, trend and seasonal patterns.
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Figure 6.9: Possible time series for prediction

Let us presume we have observed data X1, … , X𝑛 and we want to predict the future values X𝑛+ℎ
for ℎ = 1, 2, …. Firstly, let us introduce a new notation X̂𝑛+ℎ|𝑛 to denote the prediction of X𝑛+ℎ
from observed X1, … , X𝑛. Moreover, we assume there is no systematic trend or seasonal effects. This
means that the level of the process can vary with time but we have no information about the likely
direction of these changes.

As such, we model our data with
X𝑡 = 𝜇𝑡 + e𝑡,

where 𝜇𝑡 is the varying mean of the process and e𝑡 are independent random inputs with mean 0
and standard deviation 𝜎 . Also, let a𝑡 be an estimate of 𝜇𝑡.

Since there is no systematic trend, X𝑛+ℎ can be simply predicted by the forecating equation:

X̂𝑛+ℎ|𝑛 = a𝑛.

The estimate a𝑡 can be obtained using the same way – no systematic trend implies that it is reason-
able to estimate 𝜇𝑡 by a weighted average of our estimate at time 𝑡 − 1 and the new observation at
time 𝑡, i.e. by the smoothing equation

a𝑡 = 𝛼X𝑡 + (1 − 𝛼)a𝑡−1 (6.1)

for some 𝛼 ∈ (0, 1). Here we call 𝛼 a smoothing parameter. For 𝛼 close to 1, we put more weight on
the new observation X𝑡, which produces fast changes. On the other hand, for 𝛼 close to 0, we put
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more weight on the previous estimate a𝑡−1, which forces changes to be rather slow. We can repeat
the process behind (6.1) with the back-substitution method to get

a𝑡 = 𝛼X𝑡 + 𝛼(1 − 𝛼)X𝑡−1 + 𝛼(1 − 𝛼)2X𝑡−2 + …

Note

From this arises the name exponential smoothing or exponentially weighted moving average.

As an example, consider exponential smoothing applied to global temperatureswith the following
code

data(gtemp,package="astsa")
# fit the model
m = HoltWinters(gtemp,

alpha=.3,
beta=F,
gamma=F

)
# compute predictions 10 years ahead
p = predict(m,10)
plot(m,p,main="")
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Figure 6.10: Exponential smoothing on global temperatures
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Figure 6.11: The effect of the smoothing 𝛼 parameter

6.2.1 Selection of the smoothing parameter

As always, the exact selection of the smoothing parameter is a tricky matter. In general, small
𝛼 leads to over-smoothing and the smoothed level lacks flexibility, while big 𝛼 promotes under-
smoothing, and the smooth level follows the data too closely. As heuristics, values around 0.2 to
0.3 are often recommended.

In linear regression we estimate parameters by minimizing the sum of squared errors, so here we
can use the same idea. Surely, we can estimate the unknown parameters and the initial values for
exponential smoothing by minimizing the sum of squared errors. In this case, we consider the
prediction errors X𝑡 − X̂𝑡|𝑡−1. Putting all of this together we get that the criterion to minimize is

𝑛
∑
𝑡=1

(X𝑡 − X̂𝑡|𝑡−1)
2

.

Unlike with ordinary least squares, this problem is non-linear and numerical methods (like New-
ton’s method) must be used.

Tip

In R one can use HoltWinters to estimate the smoothing parameter 𝛼.

What’s more, we can construct prediction intervals that will contain the future observation X𝑛+ℎ
with a high probability, e.g. 0.95, as in Figure 6.12 using the following code.
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m = HoltWinters(gtemp,
alpha=.3,
beta=F,
gamma=F

)
p = predict(m,10,

prediction.interval=TRUE
)
plot(m,p,main="")
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Figure 6.12: Prediction intervals for future values of global temperatures

6.3 Holt’s linear method

Exponential smoothing assumes no trend of the level, predictions are constant, but this may be
insufficient, e.g., global temperatures exhibit temporary trends. As such, we use Holt’s method
which incorporates trends. Therefore we predict X𝑛+ℎ from data up to time 𝑛 by

X̂𝑛+ℎ|𝑛 = a𝑛 + ℎb𝑛,

for ℎ = 1, 2, …, where a𝑛 is an estimate of level, and b𝑛 is an estimate of slope. So now we esti-
mate the level at 𝑡 by a combination of the new observation and linearly extrapolated previous
estimate

a𝑡 = 𝛼X𝑡 + (1 − 𝛼)(a𝑡−1 + b𝑡−1).

Similarly, we estimate the slope by a combination of the slope of the new level change and the
previous estimate

b𝑡 = 𝛽(a𝑡 − a𝑡−1) + (1 − 𝛽)b𝑡−1.
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Same as before, 𝛼, 𝛽 ∈ (0, 1) are smoothing parameters controlling the flexibility of the estimates
a𝑡, b𝑡 – how quickly they adapt to new data.

To demonstrate this method, consider the following code, which plots Figure 6.13.

# fit the model
m = HoltWinters(gtemp,

alpha=.4,
beta=.1,
gamma=F

)
# point and interval predictions
p = predict(m,10,

prediction.interval=TRUE
)
plot(m,p,main="")

Time

O
bs

er
ve

d 
/ F

itt
ed

1880 1900 1920 1940 1960 1980 2000 2020

0.
0

1.
0

Figure 6.13: Holt’s linear method

To get a better understanding of the effect of change of the smoothing parameters 𝛼, 𝛽, wemay plot
smoothed levels for a fixed 𝛼 and different 𝛽 (we’ve seen the effect of 𝛼 already, see Figure 6.11).

Note

Again, we can optimize for the value of parameters against some criterion using, for example,
least squares.
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Figure 6.14: Effect of 𝛽 on smoothed level using Holt’s linear method

6.4 Holt-Winters method

While Holt’s linear method is more general than pure exponential smoothing, it still lacks any
seasonality. An extension of Holt’s linear method to include the aforementioned seasonality is
called a Holt-Winters method. Consider a season with length 𝑝, e.g. 𝑝 = 12. We now predict X𝑛+ℎ
from data up to time 𝑛 by

X̂𝑛+ℎ|𝑛 = a𝑛 + ℎb𝑛 + s𝑛+ℎ−⌈ℎ/𝑝⌉𝑝,

for ℎ = 1, 2, …, where

• a𝑛 is an estimate of the level;
• b𝑛 is an estimate of the slope;
• s𝑛+ℎ−⌈ℎ/𝑝⌉𝑝 is an estimate of the seasonal effect at time 𝑛+ℎ−⌈ℎ/𝑝⌉ 𝑝 (i.e., the corresponding

seasonal effect within the last p observation times, e.g., the seasonal of the last observed
April if 𝑛 + ℎ is in April).

The updating equations now are

a𝑡 = 𝛼(X𝑡 − s𝑡−𝑝) + (1 − 𝛼)(a𝑡−1 + b𝑡−1),
b𝑡 = 𝛽(a𝑡 − a𝑡−1) + (1 − 𝛽)b𝑡−1,
s𝑡 = 𝛾(X𝑡 − a𝑡) + (1 − 𝛾)s𝑡−𝑝,

where 𝛼, 𝛽, 𝛾 ∈ (0, 1) are the smoothing parameters. Again, to demonstrate consider the housing
sales data and the following code
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# let alpha, beta, gamma be selected automatically
m = HoltWinters(hsales)
# compute predictions 10 years ahead
p = predict(m,24,

prediction.interval=TRUE
)
plot(m,p,main="")
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Figure 6.15: Smoothing and prediction using Holt-Winters method
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7 ARMA Processes

7.1 From differences equations to ARMA models

Autoregressive models work on the idea that we may want to model or describe real-world phe-
nomena by recurrence relations

𝑥𝑡 = 𝑔(𝑥𝑡−1, … , 𝑥𝑡−𝑝),
for example 𝑥𝑡 = 𝜑𝑥𝑡−1 or Δ𝑥𝑡 ≡ 𝑥𝑡 − 𝑥𝑡−1 = 𝜑𝑥𝑡−1. Often it is sufficient to take a linear relation 𝑔,
thus we get homogeneous linear difference equation of order 𝑝

𝑥𝑡 = 𝜑1𝑥𝑡−1 + ⋯ + 𝜑𝑝𝑥𝑡−𝑝.

We will find these models as a motivation for a class of models for time series or as tools for
deriving their properties.

Tip

ARMA model stands for AutoRegressive Moving Average model.

7.1.1 Backshift operator

Definition 7.1 (Backshift operator). The backshift (or lag) operator 𝖡 is the operator that maps a
sequence {𝑥𝑡; 𝑡 ∈ ℤ} to the sequence {𝑥𝑡−1; 𝑡 ∈ ℤ}, i.e., element-wise 𝖡𝑥𝑡 = 𝑥𝑡−1.

By a 𝑘-power of 𝖡 we denote a repeated application

𝖡𝑘𝑥𝑡 =
𝑘

⏞𝖡 … 𝖡 𝑥𝑡 = 𝑥𝑡−𝑘.
Surely 𝖡0𝑥𝑡 = 1𝑥𝑡 = 𝑥𝑡. We may also notice that this operator is linear

𝑎𝖡𝑘𝑥𝑡 + 𝑏 = 𝑎𝑥𝑡−𝑘 + 𝑏,
and its difference is defined as (1−𝖡)𝑥𝑡 = 𝑥𝑡−𝑥𝑡−1. Considering polynomials, for𝑃(𝑧) = ∑𝑝

𝑗=0 𝛼𝑗𝑧𝑗,
we get 𝑃(𝖡)𝑥𝑡 = ∑𝑝

𝑗=0 𝛼𝑗𝑥𝑡−𝑗. Together, the difference equation
𝑥𝑡 − 𝜑1𝑥𝑡−1 − ⋯ − 𝜑𝑝𝑥𝑡−𝑝 = 0

can be written as
Φ (𝖡) 𝑥𝑡 = 0,

where Φ (𝑧) = 1 − ∑𝑝
𝑗=1 𝜑𝑗𝑧𝑗.
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7.1.2 Solving difference equations

Consider a difference equation

𝑥𝑡 − 𝜑1𝑥𝑡−1 − ⋯ − 𝜑𝑝𝑥𝑡−𝑝 = 0,

i.e. Φ (𝖡) 𝑥𝑡 = 0, and let our goal be to find solution(s), i.e. find {𝑥𝑡, 𝑡 ∈ ℕ} that satisfies this
equations. For 𝑝 = 1, straightforward substitution gives

𝑥𝑡 = 𝜑1𝑥𝑡−1 = ⋯ = 𝜑𝑡
1𝑥0.

Notice that 𝜑1 satisfies Φ (𝜑−1
1 ) = 0. Thus, the solution is of the form 𝑐𝜉−𝑡

0 , where 𝜉0 is the root of
Φ. For 𝑝 > 1, if 𝜉0 is a simple root of Φ, we can factorize Φ as

Φ (𝑧) = Φ∗(𝑧)(1 − 𝜉−1
0 𝑧).

Hence 𝑐𝜉−𝑡
0 solves the equation Φ (𝖡) 𝑥𝑡 = Φ∗(𝖡)(1 − 𝜉−1

0 𝖡)𝑥𝑡 = 0, because it solves the first order
equation (1 − 𝜉−1

0 𝖡)𝑥𝑡 = 0. This procedure can be repeated with all simple roots. On the other
hand, if 𝜉0 is a root with multiplicity 𝑚, then Φ can be factorized as

Φ (𝑧) = Φ∗(𝑧)(1 − 𝜉−1
0 𝑧)𝑚,

where the equation (1 − 𝜉−1
0 𝑧)𝑚 is then solved by 𝜉−𝑡

0 , 𝑡𝜉−𝑡
0 , … , 𝑡𝑚−1𝜉−𝑡

0 . Because it can be shown
that any non-trivial linear combination of solutions is a solution, then the general solution is given
by the following expression

𝑞
∑
𝑗=1

𝑚𝑗−1

∑
𝑘=0

𝑐𝑗𝑘𝑡𝑘𝜉−𝑡
𝑗 ,

where 𝜉1, … , 𝜉𝑞 are distinct roots with multiplicities 𝑚1, … , 𝑚𝑞, i.e. ∑𝑞
𝑗=1 𝑚𝑗 = 𝑝. For a pair of

complex conjugate roots (𝜉𝑗, 𝜉𝑗), the solution becomes

𝑚−1
∑
𝑘=0

𝑎𝑗𝑘𝑡𝑘 ∣𝜉𝑗∣
−𝑡

cos(arg(𝜉𝑗)𝑡 + 𝑏𝑗𝑘).

Note that using initial conditions (values of 𝑥𝑡 at 𝑝 time points), we can determine 𝑐𝑗𝑘 (and
𝑎𝑗𝑘, 𝑏𝑗𝑘).

7.1.3 Stochastic difference equations

In real data, difference equations may not hold exactly as observed data are less regular. But we
could theoretically exploit the asymptotic behavior of difference equations: when all roots are
outside the unit circle (∣𝜉𝑗∣ > 1), the solution converges to 0 but in real data, we see stabilization
rather than extinction.
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To overcome these issues, we may add some randomness to the equation

𝑥𝑡 − 𝜑1𝑥𝑡−1 − ⋯ − 𝜑𝑝𝑥𝑡−𝑝 = 0.

Let {ε𝑡, 𝑡 ∈ ℤ} be a sequence of random variables with mean 0, variance 𝜎2 > 0 and covariance 0
(white noise WN (0, 𝜎2)). Now consider the stochastic difference equation

X𝑡 − 𝜑1X𝑡−1 − ⋯ − 𝜑𝑝X𝑡−𝑝 = ε𝑡,

i.e. Φ (𝖡) X𝑡 = ε𝑡. Here ε𝑡 are random errors/disturbances/perturbations of the model/random
inputs.

Definition 7.2 (Autoregressive (AR) model). The process {X𝑡, 𝑡 ∈ ℤ} satisfying

X𝑡 − 𝜑1X𝑡−1 − ⋯ − 𝜑𝑝X𝑡−𝑝 = ε𝑡,

where {ε𝑡} ∈ WN (0, 𝜎2), is called an autoregressive process of order 𝑝.

The Definition 7.2 coins the so-called autoregression

X𝑡 = 𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡,

which means that past values are predictors of future values. It is convenient for forecasting and
it is constructive, as it describes the underlying physical process and the random data generating
process. Moreover, random errors influence future outcomes as they accumulate, i.e. it features
the propagation of errors.

Tip

Compare, e.g., with linear regression Y𝑖 = 𝛽0+𝛽1Z𝑖+e𝑖 – the outcome is alsomodel (straight
line) plus random error, but the errors do not enter as input in the model.

In time series, we have dependent (correlated) sequences of variables. Correlation often becomes
small or disappears for observations far apart.

Figure 7.1: ACF from simulated series
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This suggests that we may attempt to construct variables that are correlated up to some lag, then
uncorrelated, e.g. consider linear combinations of white noise.

7.1.4 Moving average model

Definition 7.3. The process {X𝑡, 𝑡 ∈ ℤ} satisfying

X𝑡 = ε𝑡 + 𝜃1ε𝑡−1 + ⋯ + 𝜃𝑞ε𝑡−𝑞,

for 𝑡 ∈ ℤ, where {ε𝑡} ∼ WN (0, 𝜎2), is called a moving average process of order 𝑞.

Again, we can write X𝑡 = Θ(𝖡)ε𝑡 for Θ(𝑧) = 1 + 𝜃1𝑧 + … 𝜃𝑞𝑧𝑞. Obviously, cov (X𝑡, X𝑡+ℎ) = 0 for
∣ℎ∣ > 𝑞, and surely it is stationary.

7.2 Towards ARMA models

We have 2 different concepts:

• Deterministic difference equation: the ideal data generating process

𝑥𝑡 − 𝜑1𝑥𝑡−1 − ⋯ − 𝜑𝑝𝑥𝑡−𝑝 = 0;

• Stochastic difference equation: ideal process with random perturbation

X𝑡 − 𝜑1X𝑡−1 − ⋯ − 𝜑𝑝X𝑡−𝑝 = ε𝑡.

Because random inputs (disturbances, errors, …), i.e. uncorrelated variables (white noise) may
sometimes be too restrictive, we may want to allow correlated perturbations of the difference
equation. Thus we may use an MA process instead of a pure white noise.

Definition 7.4 (ARMA model). The process {X𝑡, 𝑡 ∈ ℤ} satisfying

X𝑡 − 𝜑1X𝑡−1 − ⋯ − 𝜑𝑝X𝑡−𝑝 = ε𝑡 + 𝜃1ε𝑡−1 + ⋯ + 𝜃𝑞ε𝑡−𝑞, (7.1)

for 𝑡 ∈ ℤ, where {ε𝑡} ∼ WN (0, 𝜎2), is called an autoregressive moving average process of order
(𝑝, 𝑞).

Clearly, the equation (7.1) from Definition 7.4 can be re-written as

Φ (𝖡) X𝑡 = Θ (𝖡) ε𝑡, 𝑡 ∈ ℤ

for

Φ(𝑧) = 1 −
𝑝

∑
𝑗=1

𝜑𝑗𝑧𝑗, Θ(𝑧) = 1 +
𝑞

∑
𝑘=1

𝜃𝑘𝑧𝑘.
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Note

Trivially, ARMA (𝑝, 0) = AR (𝑝) and ARMA (0, 𝑞) = MA (𝑞).

7.2.1 Parameter redundancy

Consider now ARMA (0, 0) process given by X𝑡 = ε𝑡. Equivalently, 𝛼X𝑡−1 = 𝛼ε𝑡−1. By subtracting
these two equations, we get

X𝑡 − 𝛼X𝑡−1 = ε𝑡 − 𝛼ε𝑡−1, (7.2)
which looks like anARMA (1, 1) process but X𝑡 is still white noise (i.e. X𝑡 = ε𝑡 solves the equation).
Thus we got parameter redundancy (or over-parametrization).

Hence we can rewrite (7.2) in form Φ (𝖡) X𝑡 = Θ(𝖡)ε𝑡, then

(1 − 𝛼𝖡)X𝑡 = (1 − 𝛼𝖡)ε𝑡

and we can apply (1 − 𝛼𝖡)−1 to get X𝑡 = ε𝑡. In general, we can do this with all common roots
(factors) of Φ and Θ to reduce the complexity of the parametrization.

7.3 Basic properties of ARMA processes

7.3.1 Infinite moving average

Recall the moving average MA (𝑞)

𝑋𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞

defined in Definition 7.3. We can extend it to MA (∞) as follows

X𝑡 = ε𝑡 + 𝜓1ε𝑡−1 + ⋯ =
∞
∑
𝑗=0

𝜓𝑗ε𝑡−𝑗.

Remember now the already presented AR (1) has the form

X𝑡 = 𝜑1X𝑡−1 + ε𝑡 = 𝜑2
1X𝑡−2 + 𝜑1ε𝑡−1 + ε𝑡 = ⋯ = 𝜑𝑘

1X𝑡−𝑘 +
𝑘−1
∑
𝑗=0

𝜑𝑗
1ε𝑡−𝑗,

then maybe

X𝑡 =
∞
∑
𝑗=0

𝜑𝑗
1ε𝑡−𝑗.

Much care is needed though – the series above should be the limit of randomvariables ∑𝑛
𝑗=0 𝜓𝑗ε𝑡−𝑗

as 𝑛 → ∞, but we haven’t specified in which sense we view this limit and it is not trivial to deter-
mine whether it exists.
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7.4 Intermezzo on 𝐿2

Consider 𝐿2(Ω, 𝒜, 𝑃) s the set of all random variables on (Ω, 𝒜, 𝑃) with finite second moments
(𝔼 𝑋2 < ∞). Then 𝐿2(Ω, 𝒜, 𝑃) is a linear space. We define ⟨X, Y⟩ = 𝔼 (XY), where ⟨X, Y⟩ is an
inner (scalar/dot) product – meaning it is symmetric, linear, ⟨X, X⟩ ≥ 0 and ⟨X, X⟩ = 0 ⟺ X = 0.
Also we define the norm ∥X∥ = ⟨X, X⟩

1
2 = (𝔼 X2)1/2. Two important properties then hold

• ∥X + Y∥ ≤ ∥X∥ + ∥Y∥ (triangle inequality);
• ∣⟨X, Y⟩∣ ≤ ∥X∥ ∥Y∥ (Cauchy-Schwarz inequality).

Convergence in this space is the convergence in the norm ‖⋅‖

X𝑛
𝐿2
⟶𝑛→∞ X ⟺ ∥X − X𝑛∥2 = 𝔼 ((X𝑛 − X)2) ⟶𝑛→∞ 0,

which is called convergence in 𝐿2 (or convergence in the mean/convergence in mean-square). Now recall
that a sequence is called Cauchy if ∥𝑥𝑛 − 𝑥𝑘∥ → 0 as 𝑛, 𝑘 → ∞ and that a metric space is called
complete if every Cauchy sequence of elements of the space has a limit in the space. Hence it can
be deduced that 𝐿2 is a Hilbert space.

Note

A space with inner product, that is complete, i.e. every Cauchy sequence has the limit in the
space, is called Hilbert space.

7.5 Existence of linear processes

Theorem 7.1. If {ε𝑡, 𝑡 ∈ ℤ} ∼ WN (0, 𝜎2) and the sequence {𝜓𝑗, 𝑗 ∈ ℤ} is such that ∑∞
𝑗=1 𝜓2

𝑗 < ∞,
then the random series ∑∞

𝑗=0 𝜓𝑗ε𝑡−𝑗 converges in 𝐿2, i.e., there is a variable Y ∈ 𝐿2(Ω, 𝒜, 𝑃) such that

𝔼 ⎛⎜⎜
⎝

Y −
𝑛

∑
𝑗=0

𝜓𝑗ε𝑡−𝑗
⎞⎟⎟
⎠

→ 0

as 𝑛 → ∞.

Proof. Since 𝐿2 is a Hilbert space, it is enough to verify the Cauchy criterion, which is implied by
the following:

𝔼 ⎛⎜⎜
⎝

𝑛+𝑚
∑
𝑗=0

𝜓𝑗ε𝑡−𝑗 −
𝑛

∑
𝑗=0

𝜓𝑗ε𝑡−𝑗
⎞⎟⎟
⎠

2

=
𝑛+𝑚
∑

𝑗,𝑘=𝑛+1
𝜓𝑗𝜓𝑘 𝔼 (ε𝑗ε𝑘) =

𝑛+𝑚
∑

𝑗=𝑛+1
𝜓2

𝑗 𝜎2 → 0.
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Similarly, we can formulate a more general theorem.

Theorem 7.2. If {Y𝑡, 𝑡 ∈ ℤ} is a mean zero stationary sequence and the sequence {𝜓𝑗, 𝑗 ∈ ℤ} is such
that ∑∞

𝑗=1 ∣𝜓𝑗∣ < ∞, then the random series ∑∞
𝑗=0 𝜓𝑗Y𝑡−𝑗 converges in 𝐿2 (in mean square) and also abso-

lutely with probability 1.

This way we assumed all general stationary processes (not only white noise) and got almost sure
convergence (not only in 𝐿2). Thus given a linear process

X𝑡 =
∞
∑
𝑗=0

𝜓𝑗ε𝑡−𝑗

with mean
𝔼 X𝑡 =

∞
∑
𝑗=0

𝜓𝑗 𝔼 ε𝑡−𝑗 = 0

and covariance

cov(X𝑠, X𝑡) = 𝔼 ⎛⎜⎜
⎝

⎛⎜⎜
⎝

∞
∑
𝑗=0

𝜓𝑗ε𝑡−𝑗
⎞⎟⎟
⎠

⎛⎜⎜
⎝

∞
∑
𝑗=0

𝜓𝑗ε𝑡−𝑗
⎞⎟⎟
⎠

⎞⎟⎟
⎠

=
∞
∑

𝑗,𝑘=1
𝜓𝑗𝜓𝑘 𝔼 (ε𝑠−𝑗ε𝑡−𝑘) =

∞
∑
𝑗=0

𝜓𝑗𝜓𝑗+|𝑡−𝑠|𝜎2,

it follows that {X𝑡} is weakly stationary, see Definition 3.2.

7.6 Causality

Consider AR (1) and iteratively substitute

X𝑡 = 𝜑1X𝑡−1 + ε𝑡 = 𝜑2
1X𝑡−2 + 𝜑1ε𝑡−1 + ε𝑡 = ⋯ = 𝜑𝑘

1X𝑡−𝑘 +
𝑘−1
∑
𝑗=0

𝜑𝑗
1ε𝑡−𝑗,

then if ∣𝜑1∣ < 1 and {X𝑡} is stationary, the the remainder term 𝜑𝑘
1X𝑡−𝑘 goes to 0 in 𝐿2 as 𝑘 → ∞,

because
𝔼 ((𝜑𝑘

1X𝑡−𝑘)2) = 𝜑2𝑘
1 𝔼 (X2

𝑡−𝑘) → 0.

Also the series ∑∞
𝑗=0 𝜑𝑗

1ε𝑡−𝑗 converges because ∑∞
𝑗=0(𝜑𝑗

1)2 < ∞. Hence we have the causal repre-
sentation

X𝑡 =
∞
∑
𝑗=0

𝜑𝑗
1ε𝑡−𝑗,
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where causalmeans the current state depends on some history. We can also iterate in the opposite
direction

X𝑡 = 𝜑−1
1 X𝑡+1 − 𝜑−1

1 ε𝑡+1
= 𝜑−2

1 X𝑡+2 − 𝜑−2
1 ε𝑡+2 − 𝜑−1

1 ε𝑡+1
= …

= 𝜑−𝑘
1 X𝑡+𝑘 −

𝑘−1
∑
𝑗=1

𝜑−𝑗
1 ε𝑡+𝑗,

so if ∣𝜑1∣ > 1 and {X𝑡} is stationary, we get the future dependent representation

X𝑡 = −
∞
∑
𝑗=1

𝜑−𝑗
1 ε𝑡+𝑗.

Hence a stationary solution exists, but is practically useless, because it requires the knowledge of
the future for the prediction of the future. Also note that for ∣𝜑1∣ = 1, the process is not stationary
(we get a random walk).

Definition 7.5 (Causality). An ARMA (𝑝, 𝑞) process is said to be causal if there exists a sequence
{𝜓𝑗, 𝑗 ∈ ℕ0} such that ∑∞

𝑗=0 ∣𝜓𝑗∣ < ∞ and

X𝑡 =
∞
∑
𝑗=0

𝜓𝑗ε𝑡−𝑗, 𝑡 ∈ ℤ,

where 𝝍 is called a filter and this representation is called a causal representation of the process.

Since
∞
∑
𝑗=0

𝜓2
𝑗 ≤ ⎛⎜⎜

⎝

∞
∑
𝑗=0

∣𝜓𝑗∣
⎞⎟⎟
⎠

2

< ∞,

a causal process is a linear process. Also since linear processes are stationary, causal ARMA pro-
cesses are stationary.

7.6.1 Causality of an autoregressive process of order 𝑝

Consider an AR (𝑝) process of the form Φ(𝖡)X𝑡 = ε𝑡. Let us try to find its causal representation.
First, we factorize

Φ(𝑧) =
𝑟

∏
𝑗=1

(1 − 𝜉−1
𝑗 𝑧)

𝑚𝑗 ,

where 𝜉𝑗 are the distinct roots with multiplicities 𝑚𝑗, ∑𝑟
𝑗=1 𝑚𝑗 = 𝑝. Thus

(1 − 𝜉−1
1 )𝑚1 ⋅ ⋯ ⋅ (1 − 𝜉−1

𝑟 )𝑚𝑟 X𝑡 = 𝜀𝑡.
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So if ∣𝜉−1
𝑗 ∣ < 1 (i.e. ∣𝜉𝑗∣ > 1), we have (1 − 𝜉−1

𝑗 )
−1

= ∑∞
ℎ=0 𝜉−ℎ

𝑗 𝖡ℎ. Then we successively apply
(1 − 𝜉−1

1 )−1 to both sides to work out the coefficients. The key assumption here is that all roots of
Φ(𝑧) lie outside the unit circle.

Theorem 7.3. Let {X𝑡} be an ARMA (𝑝, 𝑞) process for which the polynomials Φ and Θ have no common
roots (otherwise we can cancel them out). Then {X𝑡} is causal if and only if all roots of Φ lie outside the
unit circle, i.e., Φ(𝑧) ≠ 0 for all 𝑧 ∈ ℂ such that |𝑧| ≤ 1. Then coefficients {𝜓𝑗} can be determined by the
relation

Ψ(𝑧) =
∞
∑
𝑗=0

𝜓𝑗𝑧𝑗 = Θ(𝑧)/Φ(𝑧), |𝑧| ≤ 1.

7.6.2 Non-uniqueness of MA models and inverting them

Consider two MA (1) models

X𝑡 = (1 + 𝜃1𝖡)ε𝑡, ε𝑡 ∼ WN (0, 𝜎2) ,
X∗

𝑡 = (1 + 𝜃−1
1 𝖡)ε∗

𝑡 , ε∗
𝑡 ∼ WN (0, 𝜃2

1𝜎2) ,

then both X𝑡 and X∗
𝑡 have the same autocovariance fuction

𝛾(0) = (1 + 𝜃2
1)𝜎2, 𝛾(1) = 𝜃1𝜎2, 𝛾(ℎ) = 0

for ∣ℎ∣ > 1. Hence we have two representations for the same covariance structure of the observed
process (if 𝜃1 ≠ 1). Thus we choose one of them – by mimicking the idea of causality for AR, we
choose the invertible one, that is, X𝑡 if ∣𝜃1∣ < 1 and X∗

𝑡 if ∣𝜃1∣ > 1.

Therefore, WLOG, let us assume that ∣𝜃1∣ < 1. Then we can invert MA (1) to get the its AR (∞)
representation

ε𝑡 = (1 + 𝜃1𝖡)−1 X𝑡 =
𝑘

∑
𝑗=0

(−𝜃1)𝑗X𝑡−𝑗.

Consider now a moving average process MA (𝑞)

X𝑡 = Θ(𝖡)ε𝑡, 𝑡 ∈ ℤ.

Then we factorize Θ to get

X𝑡 = (1 − 𝜉−1
1 𝖡)𝑚1 ⋅ … ⋅ (1 − 𝜉−1

𝑟 𝖡)𝑚𝑟 ε𝑡,

where 𝜉𝑗 are the distinct roots with multiplicities 𝑚𝑗, ∑𝑟
𝑗=1 𝑚𝑗 = 𝑝. Thus, WLOG, we assume

that ∣𝜉−1
𝑗 ∣ < 1, that is, all roots of Θ(𝑧) are outside the unit circle (possibly after flipping to the

reciprocal in each factor and multiplying the error variance as shown before).
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Analogously to the AR (𝑝) case, we can invert the MA (𝑞) representation and successively apply
(1 − 𝜉−1

𝑗 𝖡)
−𝑚𝑗 to both sides to get the infinite AR representation (or invertible representation)

ε𝑡 =
∞
∑
𝑗=0

𝜋𝑗X𝑡−𝑗.

Note

Notice that X𝑡 = ∑∞
𝑗=1 X𝑡−𝑗 + ε𝑡, which is AR (∞) process.

Definition 7.6. An ARMA (𝑝, 𝑞) process is said to be invertible if there exists a sequence
{𝜋𝑗, 𝑗 ∈ ℕ0} such that ∑∞

𝑗=0 ∣𝜋𝑗∣ < ∞ and

ε𝑡 =
∞
∑
𝑗=0

𝜋𝑗X𝑡−𝑗, 𝑡 ∈ ℤ.

Theorem 7.4. Let {X𝑡} be an ARMA (𝑝, 𝑞) process for which the polynomials Φ and Θ have no common
roots. Then {X𝑡} is invertible if and only if all roots of Θ lie outside of the unit circle, i.e., Θ(𝑧) ≠ 0 for
all 𝑧 ∈ ℂ such that |𝑧| ≤ 1. The coefficients {𝜋𝑗} can be determined by relation

Π(𝑧) =
∞
∑
𝑗=0

𝜋𝑗𝑧𝑗 = Φ(𝑧)/Θ(𝑧), |𝑧| ≤ 1.
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8 Correlation Structure in ARMA Processes

Our motivation for the last lecture was to describe autocorrelated time series. Thus we should
study the autocorrelation structure of ARMA models. Consider now an MA (𝑞) process

X𝑡 = ε𝑡 + 𝜃1ε𝑡−1 + ⋯ + 𝜃𝑞ε𝑡−𝑞,

where {ε𝑡} ∼ WN (0, 𝜎2). Recall that 𝛾(ℎ) = 𝛾(−ℎ) and compute for ℎ ≥ 0

𝛾(ℎ) = cov(X𝑡, X𝑡 + ℎ)

= cov⎛⎜⎜
⎝

𝑞
∑
𝑗=0

𝜃𝑗ε𝑡−𝑗,
𝑞

∑
𝑗=0

𝜃𝑗ε𝑡+ℎ−𝑗
⎞⎟⎟
⎠

=
⎧{
⎨{⎩

𝜎2 ∑𝑞−ℎ
𝑗=0 𝜃𝑗𝜃𝑗+ℎ, 0 ≤ ℎ ≤ 𝑞,

0, ℎ > 𝑞

and that the autocorrelation function 𝜌 has, in this case, the form

𝜌(ℎ) =
⎧{{
⎨{{⎩

∑𝑞−ℎ
𝑗=0 𝜃𝑗𝜃𝑗+ℎ

∑𝑞
𝑗=0 𝜃2

𝑗
, 0 ≤ ℎ ≤ 𝑞,

0, ℎ > 𝑞.

To illustrate the preceding derivations, consider the following MA (1) processes and observe

𝜌(1) = 𝜃1
1 + 𝜃2

1
, 𝜌(ℎ) = 0

for ℎ > 1.
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Figure 8.1: Dependence of 𝜌(1) on 𝜃1

Notice that ∣𝜌(1)∣ ≤ 0.5 and it has maximum at 𝜃1 = ±1. Also, observe that for most values
of 𝜌(1) there exist 2 choices for 𝜃1. From the fact that ∣𝜌(1)∣ ≤ 0.5 follows that we cannot use
MA (1) to model data with acf (1, 0.7, 0, 0, … ). Consider now MA (2) models and look at their
autocorrelations.

Figure 8.2: Autocorrelations of MA (2) models

It can be computed that

𝜌(1) = 𝜃1 + 𝜃1𝜃2
1 + 𝜃2

1 + 𝜃2
2

, 𝜌(2) = 𝜃2
1 + 𝜃2

1 + 𝜃2
2

, 𝜌(ℎ) = 0
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for ℎ > 1, which can be seen in Figure 8.3. It can also be shown easily that ∣𝜌(2)∣ ≤ 0.5 with
maximum at 𝜃1 = 0 and 𝜃2 = ±1.

Figure 8.3: Depedence of 𝜌 on 𝜃1, 𝜃2

8.1 Autocorrelation of the AR process

Let X𝑡 be a causal AR (𝑝) process

X𝑡 = 𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡,

where {ε𝑡} ∼ WN (0, 𝜎2). Since {X𝑡} is causal, we see that X𝑡 = ∑∞
𝑗=0 𝜓𝑗ε𝑡−𝑗 and thus 𝔼 X𝑡 = 0.

Now compute for ℎ ≥ 0 that

𝛾(ℎ) = 𝔼 (X𝑡X𝑡−ℎ)
= 𝔼 ((𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + 𝜀𝑡) X𝑡−ℎ)
= 𝜑1𝛾(ℎ − 1) + ⋯ + 𝜑𝑝𝛾(ℎ − 𝑝) + 𝜎2𝟙ℎ=0.

For ℎ ≥ 𝑝 we get
𝛾(ℎ) − 𝜑1𝛾(ℎ − 1) − ⋯ − 𝜑𝑝𝛾(ℎ − 𝑝) = 0

or by dividing through by 𝛾(0) it yields

𝜌(ℎ) − 𝜑1𝜌(ℎ − 1) − ⋯ − 𝜑𝑝𝜌(ℎ − 𝑝) = 0,

which are called the Yule-Walker equations.
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Caution

Here we can see that we started with some difference equation, then we added a stochastic
part, but on the autocorrelation level, we still have the same difference equation. For poly-
nomial decay time series, we have to use different methods/models.

Thus we recognize that 𝛾(ℎ) (or 𝜌(ℎ)), ℎ = 0, 1, …, satisfies the (deterministic) 𝑝-th order differ-
ence equation (for ℎ ≥ 𝑝)

𝜌(ℎ) − 𝜑1𝜌(ℎ − 1) − ⋯ − 𝜑𝑝𝜌(ℎ − 𝑝) = 0,

i.e. Φ(𝖡)𝜌(ℎ) = 0. The general solution then is

𝜌(ℎ) =
𝑟

∑
𝑗=1

𝑚𝑗−1

∑
𝑘=0

𝑐𝑗𝑘ℎ𝑘𝜉−ℎ
𝑗

where 𝜉𝑗 are the distinct roots of Φ with multiplicities 𝑚𝑗, ∑𝑟
𝑗=1 𝑚𝑗 = 𝑝. The initial conditions then

become
𝜌(0) = 1, 𝜌(ℎ) − 𝜑1𝜌(ℎ − 1) − ⋯ − 𝜑𝑝𝜌(ℎ − 𝑝) = 0,

where ℎ = 0, 1, … , 𝑝 − 1. To compute 𝛾(0) (and thus 𝛾(ℎ)), divide the equation for 𝛾(ℎ) at ℎ = 0
by 𝛾(0) and solve to get

𝛾(0) = 𝜎2/ (1 − 𝜑1𝜌(1) − ⋯ − 𝜑𝑝𝜌(𝑝)) .

Tip

For AR processes, expect very fast (exponential) decay in parameter values – this can also
be seen in their autocorrelations.

Example 8.1. Together, the autocorrelation of AR (1) process

X𝑡 − 𝜑1X𝑡−1 = ε𝑡

has the following corresponding difference equation

𝜌(ℎ) − 𝜑1𝜌(ℎ − 1) = 0, ℎ ≥ 1,

which is solved by
𝜌(ℎ) = 𝜑1𝜌(ℎ − 1), ℎ ≥ 1.

Given the initial condition 𝜌(0) = 1, this transforms to

𝜌(ℎ) = 𝜑ℎ
1, ℎ ≥ 0

and then 𝛾(0) = 𝜎2/(1 − 𝜑2
1).
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Note

This can also be solved using the causal representation.

(a) X𝑡 = 0.8X𝑡−1 + ε𝑡

(b) X𝑡 = −0.8X𝑡−1 + ε𝑡

Figure 8.4: Examples of acf for AR (1)

(a) X𝑡 = 0.2X𝑡−1 + 0.6X𝑡−2 + ε𝑡 (b) X𝑡 = −0.6X𝑡−1 − 0.5X𝑡−2 + ε𝑡

Figure 8.5: Examples of acf for AR (2)
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8.1.1 Autocorrelation of an ARMA process

Consider a causal ARMA (𝑝, 𝑞) process

X𝑡 = 𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡 + 𝜃1ε𝑡−1 + ⋯ + 𝜃𝑞ε𝑡−𝑞,

for which surely 𝔼 X𝑡 = 0, which follows from the causal representation X𝑡 = ∑∞
𝑗=0 𝜓𝑗ε𝑡−𝑗. We can

then compute for ℎ ≥ 0 that

𝛾(ℎ) = 𝔼 (X𝑡X𝑡−ℎ) = 𝔼 ⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝑝
∑
𝑗=1

𝜑𝑗X𝑡−𝑗 +
𝑞

∑
𝑗=0

𝜃𝑗ε𝑡−𝑗
⎞⎟⎟
⎠

X𝑡−ℎ
⎞⎟⎟
⎠

=
𝑝

∑
𝑗=1

𝜑𝑗𝛾(ℎ − 𝑗) + 𝜎2
𝑞

∑
𝑗=0

𝜃𝑗𝜓𝑗−ℎ,

because
𝔼 (ε𝑡−𝑗X𝑡−ℎ) = 𝔼 ⎛⎜

⎝
ε𝑡−𝑗

∞
∑
𝑘=0

𝜓𝑘ε𝑡−ℎ−𝑘
⎞⎟
⎠

= 𝜎2𝜓𝑗−ℎ.

For ℎ ≥ max {𝑝, 𝑞 + 1}, we get homogeneous difference equations

𝛾(ℎ) − 𝜑1𝛾(ℎ − 1) − ⋯ − 𝜑𝑝𝛾(ℎ − 𝑝) = 0

or
𝜌(ℎ) − 𝜑1𝜌(ℎ − 1) − ⋯ − 𝜑𝑝𝜌(ℎ − 𝑝) = 0.

Given the initial conditions

𝛾(ℎ) − 𝜑1𝛾(ℎ − 1) − ⋯ − 𝜑𝑝𝛾(ℎ − 𝑝) = 𝜎2
𝑞

∑
𝑗=ℎ

𝜃𝑗𝜓𝑗−ℎ

for ℎ = 0, … ,max {𝑝, 𝑞 + 1} − 1. The general solution with the initial conditions stays the same
as in the homogeneous case. Lastly, from the fact that X𝑡 is causal, we get that ∣𝜉𝑗∣ > 1 and thus
𝜌(ℎ) converges exponentially fast to zero as ℎ → ∞ (in sinusoidal fashion if some of the roots are
complex).

8.2 Partial autocorrelation

We have seen that for an MA (𝑞) process 𝜌(ℎ) = 0 for ℎ > 𝑞 and 𝜌(𝑞) ≠ 0, thus 𝜌 provides informa-
tion about 𝑞. On the other hand, for AR (𝑝), no such cut-off exists, as 𝜌(ℎ) exponentially dampens.
Therefore we might look for an analog of the autocorrelation that would provide information
about the order of autoregression.

Consider now AR (1) , X𝑡 = 𝜑1X𝑡−1 + ε𝑡. Then cor(X𝑡, X𝑡−2) ≠ 0, because X𝑡 is dependent on X𝑡−2
through X𝑡−1 and the dependencies are linear. Thus we need to break the dependence chain and
remove the linear effect of everything in-between.
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Definition 8.1 (Partial correlation). The partial correlation betweenmean zero variables Y1 and Y2
given 𝐙 = (Z1, … , Z𝑚)⊤ is defined as

𝜌Y1Y2|𝐙 = cor(Y1 − Ŷ1, Y2 − Ŷ2),

where Ŷ𝑗 is the best linear prediction (BLP) of Y𝑗 from 𝐙.

Here the BLP takes the form Ŷ𝑗 = ̂𝛽(𝑗)
1 Z1 + ⋯ + ̂𝛽(𝑗)

𝑚 Z𝑚 where ( ̂𝛽(𝑗)
1 , … , ̂𝛽(𝑗)

𝑚 ) is the minimizer
of 𝔼 (Y𝑗 − ̂𝛽(𝑗)

1 Z1 − ⋯ − ̂𝛽(𝑗)
𝑚 Z𝑚). Thus 𝜌Y1Y2|𝐙 is the correlation between Y1 and Y2 when the

linear effect of 𝐙 is removed. Clearly, for a multivariate Gaussian distribution, the BLP equals the
conditional expectation and hence 𝜌Y1Y2|𝐙 = cor(Y1, Y2 | 𝐙).

Note

This concept relates to the precision (concentration) matrix

𝑷 = var(Y1, Y2, 𝐙)−1 ∶ 𝜌Y1Y2|𝐙 = −𝑃12/√𝑃11𝑃22.

Definition 8.2. The partial autocorrelation function (PACF) of a stationary process, {X𝑡}, de-
noted as 𝛼(ℎ), is defined for ℎ = 1, 2, … as

𝛼(1) = cor(X𝑡, X𝑡+1) = 𝜌(1)

and
𝛼(ℎ) = cor(X𝑡 − X̂𝑡, X𝑡+ℎ − X̂𝑡+ℎ)

= 𝜌X𝑡X𝑡+ℎ|(X𝑡+1,…,X𝑡+ℎ−1)⊤ , ℎ = 2, 3, …

where X̂𝑡 and X̂𝑡+ℎ are the best linear predictions of X𝑡 and X𝑡+ℎ from X𝑡+1, … , X𝑡+ℎ−1.

Let now X𝑡 be a causal AR (𝑝) process, X𝑡 = 𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡. For ℎ > 𝑝, compute
the mean squared prediction error for prediction of X𝑡+ℎ from X𝑡+1, … , X𝑡+ℎ−1, which we want to
minimize,

𝔼 (X𝑡+ℎ − 𝛽1X𝑡+ℎ−1 − ⋯ − 𝛽ℎ−1X𝑡+1)2

= 𝔼 ⎛⎜⎜
⎝

𝜀𝑡+ℎ +
𝑝

∑
𝑗=1

(𝜑𝑗 − 𝛽𝑗)X𝑡+ℎ−𝑗 −
ℎ−1
∑

𝑗=𝑝+1
𝛽𝑗X𝑡+ℎ−𝑗

⎞⎟⎟
⎠

2

= 𝔼 ε2
𝑡+ℎ + 𝔼 ⎛⎜⎜

⎝

𝑝
∑
𝑗=1

(𝜑𝑗 − 𝛽𝑗)X𝑡+ℎ−𝑗 −
ℎ−1
∑

𝑗=𝑝+1
𝛽𝑗X𝑡+ℎ−𝑗

⎞⎟⎟
⎠

2

≥ 𝔼 ε2
𝑡+ℎ

with the assumption that there is no correlation between ε𝑡+ℎ and the past. The minimum is
attained at 𝛽𝑗 = 𝜑𝑗 for 𝑗 = 1, … , 𝑝 and 𝛽𝑗 = 0 otherwise. So the BLP is X̂𝑡+ℎ = 𝜑1X𝑡+ℎ−1 + ⋯ +
𝜑𝑝X𝑡+ℎ−𝑝. Hence for ℎ > 𝑝, we get

𝛼(ℎ) = cor(X𝑡 − X̂𝑡, X𝑡+ℎ − X̂𝑡+ℎ) = cor(ε𝑡+ℎ, X𝑡 − X̂𝑡) = 0.

86



(a) X𝑡 = 0.8X𝑡−1 + ε𝑡 (b) X𝑡 = −0.8X𝑡−1 + ε𝑡

Figure 8.6: Examples of pacf for AR (1)

(a) X𝑡 = 0.2X𝑡−1 + 0.6X𝑡−2 + ε𝑡 (b) X𝑡 = −0.6X𝑡−1 − 0.5X𝑡−2 + ε𝑡

Figure 8.7: Examples of pacf for AR (2)

Let X𝑡 be now a causal invertible ARMA (𝑝, 𝑞) process

Φ (𝖡) X𝑡 = Θ(𝖡)ε𝑡,

then by invertibility, we have the AR (∞) representation

X𝑡 = −
∞
∑
𝑗=1

𝜋𝑗X𝑡−𝑗 + ε𝑡.

Thus no finite AR representation exists, hence the PACF does not cut off.
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Figure 8.8: Examples of acf and pacf for ARMA process X𝑡 = 1.5X𝑡−1 − 0.9X𝑡−2 + ε𝑡 − 0.7ε𝑡−1 +
0.6ε𝑡−2

We can also check the invertibility and the roots by:

polyroot(c(1,-1.5,.9)); abs(polyroot(c(1,-1.5,.9)))

[1] 0.8333333+0.6454972i 0.8333333-0.6454972i

[1] 1.054093 1.054093

polyroot(c(1,-.7,.6)); abs(polyroot(c(1,-.7,.6)))

[1] 0.583333+1.15169i 0.583333-1.15169i

[1] 1.290994 1.290994

Altogether, we get the following table Table 8.1.

Table 8.1: Behavior of 𝜌 and 𝛼 for all possible ARMA models

ACF PACF
AR (𝑝) Exponential decay Cuts off after lag 𝑝
MA (𝑞) Cuts off after lag 𝑞 Exponential decay
ARMA (𝑝, 𝑞) Exponential decay Exponential decay

88



9 Prediction of ARMA Processes

9.1 Linear prediction

Let our goal nowbe to predict future valuesX𝑛+ℎ based on the data up to time 𝑛, that is {X𝑛, … , X1}.
Specifically, we want to

• predict the future value (point prediction);
• quantify uncertainty (prediction error, prediction intervals).

Thus we need to specify the criteria of quality of predictions, try to find good (optimal) predic-
tions, focus on predictions that are easy to compute, and provide good algorithms.

9.1.1 Mean squared error criterion

Hence we want to predict Y given Z1, … , Z𝑛 (mean zero variables with finite second moments).
Given a measurable function 𝑔 ∶ ℝ𝑛 → ℝ such that 𝑔(𝐙) is on average close the unobserved value
of Y, we shall minimize the mean squared error

𝔼 (Y − 𝑔(𝐙))2 = 𝔼 (Y − 𝔼 (Y | 𝐙))2 + 𝔼 (𝔼 (Y | 𝐙) − 𝑔(𝐙))2

+ 2 𝔼 ((Y − 𝔼 (Y | 𝐙)) (𝔼 (Y | 𝐙) − 𝑔(𝐙))) .

Clearly, the last term is zero and 𝔼 (Y − 𝔼 (Y | 𝐙))2 ≥ 0. Thus for all functions 𝑔

𝔼 (Y − 𝑔(𝐙))2 ≥ 𝔼 (Y − 𝔼 (Y | 𝐙))2

and the minimum is then attained for 𝑔(𝐙) = 𝔼 (Y | 𝐙), i.e. the best prediction is the conditional
expectation. Unfortunately, this is often complicated, as it depends on the joint distribution, but
in the Gaussian case, the conditional expectation is linear. As such, we shall focus on linear pre-
dictions.
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9.2 Intermezzo

9.2.1 The Hilbert space setting for prediction

As we’ve mentioned earlier, we decided to focus on linear projections, which naturally work in
the linear space of mean zero second-order variables. Now consider a Hilbert space with inner
product ⟨𝐗, 𝐘⟩ = 𝔼 𝐗𝐘 and distance ∥𝐗 − 𝐘∥2 = 𝔼 (𝐗 − 𝐘)2. Now, given 𝐙1, … , 𝐙𝑛, candidate
linear predictions 𝑐1𝐙1 + ⋯ + 𝑐𝑛𝐙𝑛 form the linear span of 𝐙1, … , 𝐙𝑛. Unfortunately, we will also
need to consider the infinite sets 𝐙1, 𝐙2, … We define the linear span as the set of all finite linear
combinations

lin {𝐙1, 𝐙2, … } = {𝑐1𝐙𝑖1 + ⋯ + 𝑐𝑚𝐙𝑖𝑚 ∶ 𝑚 ∈ ℕ, 𝑐1, … , 𝑐𝑚 ∈ ℝ} .

Surely, its closure consists of all limits (in the mean square) of convergent sequences and it is a
closed subspace of the Hilbert space. It can be shown that the best approximation of an element
of the Hilbert space by an element in a subspace is found by orthogonal projection.

Theorem 9.1. Let 𝑀 be a closed subspace of a Hilbert space 𝐻. Then every 𝑦 ∈ 𝐻 can be uniquely
decomposed as 𝑦 = ̂𝑦 + 𝑢 where ̂𝑦 ∈ 𝑀 and 𝑢 is orthogonal to 𝑀 (í.e., ⟨𝑢, 𝑧⟩ = 0 for all 𝑧 ∈ 𝑀).
Furthermore,

∥𝑦 − ̂𝑦∥ = min
𝑧∈𝑀

∥𝑦 − 𝑧∥

and
∥𝑦∥2 = ∥ ̂𝑦∥2 + ‖𝑢‖2 .

9.3 Linear prediction - cont.

Consider the linear space lin {𝐙1, … , 𝐙𝑛} (surely it has finite dimension and is automatically
closed) and the linear predictions of form 𝐘̂ = ∑𝑛

𝑗=1 𝑐𝑗𝐙𝑗. Now our task is to find constants

𝑐1, … , 𝑐𝑛 such that 𝔼 (𝐘 − 𝐘̂)2 is minimal, which means to find the orthogonal projection on the
lin {𝐙1, … , 𝐙𝑛}, which satisfies

𝐘 − 𝐘̂ ⟂ lin {𝐙1, … , 𝐙𝑛} .

In other words,
𝔼 (𝐙(𝐘 − 𝐙⊤𝒄)) = 0,

that is, var(𝐙)𝒄 = cov(𝐙, 𝐘) or in the case of invertibility 𝒄 = var(𝐙)−1 cov(𝐙, 𝐘).

Tip

In the linear models, we had (𝐗⊤𝐗), which corresponds to var(𝐙), and (𝐗⊤𝐘) in the role of
cov(𝐙, 𝐘).
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The prediction error is then given by

𝔼 (𝐘 − 𝐙⊤𝒄)2 = var𝐘 − cov(𝐘, 𝐙)var(𝐙)−1 cov(𝐙, 𝐘).

If cov(𝐘, 𝐙) = 0, the prediction error is var𝐘, which can be interpreted as we have the same amount
of uncertainty about 𝐘 as if we did not observe 𝐙 at all and as such 𝐙 provides no additional information
about 𝐘. Hence correlation is good for prediction (which is intuitively true). In regression with iid
errors, prediction can be done only by extrapolating the fitted mean while in time series we can
exploit the association (similarity, dissimilarity) between variables. Also notice that the prediction
error is positive (unless 𝐘 is a linear function of 𝐙) and there will always be some uncertainty, and
some additional randomness in 𝐘 that is not contained in 𝐙.

9.3.1 Time-series forecasting

Now, let’s focus on zero-mean stationary time series with finite second moments based on
X1, … , X𝑛, we attempt to predict X𝑛+1 by X̂𝑛+1 (one step ahead) or X𝑛+ℎ by X̂𝑛+ℎ(𝑛) (ℎ steps
ahead). Thus we look for X̂𝑛+1 = ∑𝑛

𝑗=1 𝜑𝑛𝑗X𝑛+1−𝑗. With stationarity, the estimating equation for
X̂𝑛+1 becomes

𝜞(𝑛)𝝋(𝑛) = 𝜸(𝑛),
where 𝜞(𝑛) is the (𝑛 × 𝑛) matrix with entries Γ(𝑛)

𝑖𝑗 = 𝛾(𝑖 − 𝑗) (autocovariance), 𝜸(𝑛) =
(𝛾(1), … , 𝛾(𝑛))⊤ and 𝝋(𝑛) = (𝜑𝑛1, … , 𝜑𝑛𝑛)⊤. The non-stationary case can be solved analogously.
Also, a similar procedure could be performed for ℎ-steps predictions ahead. Surely, if 𝜞(𝑛) is
invertible, one can compute

𝝋(𝑛) = 𝜞(𝑛)−1𝜸(𝑛).

Theorem 9.2. For a mean zero stationary 𝐿2 sequence with 𝛾(0) > 0 and 𝛾(𝑘) → 0 as 𝑘 → ∞, the matrix
𝜞(𝑛) is non-singular for every 𝑛.

9.4 Recursive algorithms for computing predictions

9.4.1 Difficulties in the computation of predictions

Realize that solving
𝜞(𝑛)𝝋(𝑛) = 𝜸(𝑛),

may be difficult. While, a special structure of 𝜞(𝑛) (e.g., banded for MA models) may help, it still
would be no small feat. If the series is long (e.g., 𝑛 = 10000), we need to solve a large linear system,
i.e. invert a large matrix (problems with numerical errors, computing time, memory). Hence
we would like to avoid inverting matrices. Also when a new observation arrives, the prediction
needs to be recomputed from scratch, thus wewould like to update previous predictions, without
needing to recalculate everything. Combined, this suggests using recursive procedures that use
simple operations to update previous results
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9.4.2 Innovations

The linear prediction

X̂𝑛+1 =
𝑛

∑
𝑗=1

𝜑𝑛𝑗X𝑛+1−𝑗

is an element of the linear span lin {X1, … , X𝑛}. The principal difficulty in solving 𝝋(𝑛) = 𝜞−1
𝑛 𝜸(𝑛)

is that a non-trivial matrix must be inverted. Thus we try to re-express (change the basis) the
linear span to get a simpler matrix. Now notice that

lin {X1, … , X𝑛} = lin {X1 − X̂1, … , X𝑛 − X̂𝑛} ,

where we set X̂1 = 0, as there is no history to predict from. Innovations X𝑘 − X̂𝑘 are differences of
the actual observation and its one-step-ahead prediction based on the past. So instead of looking
for

X̂𝑛+1 =
𝑛

∑
𝑗=1

𝜑𝑛𝑗X𝑛+1−𝑗,

we equivalently search for

X̂𝑛+1 =
𝑛

∑
𝑗=1

𝜃𝑛𝑗 (X𝑛+1−𝑗 − X̂𝑛+ℎ−𝑗) .

Notice that the innovations are uncorrelated, i.e.

𝔼 (X𝑗 − X̂𝑗) (X𝑘 − X̂𝑘) = 0 (9.1)

for all 𝑗 < 𝑘, because

• X𝑗 − X̂𝑗 ∈ lin {X1, … X𝑗};
• X𝑘 − X̂𝑘 ⟂ lin {X1, … , X𝑗} by orthogonality of the projection.

Hence X1 − X̂1, … , X𝑛 − X̂𝑛 are truly uncorrelated, as we claimed, and orthogonal. From the fact,
that projections on orthogonal elements are particularly easy, and the fact that the orthogonal
projection of Y on 𝐙(𝑛) = (Z𝑛, … , Z1)⊤ is given by

Ŷ =
𝑛

∑
𝑗=1

𝜃𝑛𝑗Z𝑛+𝑗−𝑗 = 𝜽(𝑛)−1𝐙(𝑛),

where
𝜽(𝑛) = cov (𝐙(𝑛))−1 cov(𝐙(𝑛), Y).

Now if 𝐙 are orthogonal, then cov(𝐙(𝑛)) is diagonal. Thus it is easy to invert and

𝜃𝑛𝑗 =
cov(Z𝑛+1−𝑗, Y)

varZ𝑛+1−𝑗
.

92



As innovations Z𝑘 = X𝑘+1 − X̂𝑘+1, 𝑘 = 1, … , 𝑛 are orthogonal, denote

𝑣𝑘 = 𝔼 Z2
𝑘 = 𝔼 (X𝑘+1 − X̂𝑘+1)

2
. (9.2)

The covariance matrix of the innovations is diag {𝑣𝑛−1, 𝑣𝑛−2, … , 𝑣0}. Prediction coefficients then
become

𝜃𝑛,𝑛−𝑘 = 𝑣−1
𝑘 𝔼 X𝑛+1Z𝑘 = 𝑣−1

𝑘 𝔼 X𝑛+1(X𝑘+1 − X̂𝑘+1)
for 𝑘 = 1, … , 𝑛, then

𝜃𝑛,𝑛−𝑘 = 𝑣−1
𝑘 𝔼 (X𝑛+1 (X𝑘+1 − X̂𝑘+1))

= 𝑣−1
𝑘 (𝛾(𝑛 + 1, 𝑘 + 1) − 𝔼 (X𝑛+1X̂𝑘+1)) .

To compute 𝔼 𝑋𝑛+1𝑋̂𝑘+1 recall that

X̂𝑘+1 =
𝑘−1
∑
𝑗=0

𝜃𝑘,𝑘−𝑗(X𝑗+1 − X̂𝑗+1), (9.3)

hence

𝔼 X𝑛+1X̂𝑘+1 =
𝑘−1
∑
𝑗=0

𝜃𝑘,𝑘−𝑗 𝔼 X𝑛+1(X𝑗+1 − X̂𝑗+1),

where for 𝑗 < 𝑘 we get by (9.1)
𝔼 (X𝑛+1(X𝑗+1 − X̂𝑗+1)) = 𝔼 ((X𝑛+1 − X̂𝑗+1)(X𝑗+1 − X̂𝑗+1))

+ 𝔼 (X̂𝑛+1(X𝑗+1 − X̂𝑗+1))

= 𝔼 ⎛⎜
⎝

𝑛−1
∑
ℎ=0

𝜃𝑛,𝑛−ℎ(Xℎ+1 − X̂ℎ+1)(X𝑗+1 − X̂𝑗+1)⎞⎟
⎠

= 𝜃𝑛,𝑛−𝑗𝑣𝑗.
Put together, we get

𝜃𝑛,𝑛−𝑘 = 𝑣−1
𝑘

⎛⎜⎜
⎝

𝛾(𝑛 + 1, 𝑘 + 1) −
𝑘−1
∑
𝑗=0

𝜃𝑘,𝑘−𝑗𝜃𝑛,𝑛−𝑗𝑣𝑗
⎞⎟⎟
⎠

, (9.4)

and when we then compute 𝑣𝑛 = 𝔼 (X𝑛+1 − X̂𝑛+1)
2
, using orthogonality

𝔼 X2
𝑛+1 = 𝔼 (X𝑛+1 − X̂𝑛+1)

2
+ 𝔼 X̂2

𝑛+1,
thus by Definition 2.2 and the assumption {X𝑡} has mean zero, together with (9.3) and (9.4), it
finally yields

𝑣𝑛 = 𝔼 X2
𝑛+1 − 𝔼 X̂2

𝑛+1

= 𝛾(𝑛 + 1, 𝑛 + 1) − 𝔼 ⎛⎜⎜
⎝

𝑛−1
∑
𝑗=0

𝜃𝑛,𝑛−𝑗(X𝑗+1 − X̂𝑗+1)⎞⎟⎟
⎠

2

= 𝛾(𝑛 + 1, 𝑛 + 1) −
𝑛−1
∑
𝑗=0

𝜃2
𝑛,𝑛−𝑗𝑣𝑗,

which can be summarized in the following Theorem 9.3.
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Theorem 9.3 (Innovations). If {X𝑡} has mean zero and 𝔼 X𝑖X𝑗 = 𝛾(𝑖, 𝑗), where the matrix with entries
𝛾(𝑖, 𝑗), 𝑖, 𝑗 = 1, … , 𝑛 is non-singular for each 𝑛 = 1, 2, …, then the one-step predictors X̂𝑛+1, 𝑛 ≥ 0, and
their mean squared errors 𝑣𝑛, see (9.2), are given by

X̂𝑛+1 =
⎧{
⎨{⎩

0, 𝑛 = 0
∑𝑛

𝑗=1 𝜃𝑛,𝑗(X𝑛+1−𝑗 − X̂𝑛+1−𝑗), 𝑛 ≥ 1

and

𝑣0 = 𝛾(1, 1),

𝜃𝑛,𝑛−𝑘 = 𝑣−1
𝑘

⎛⎜⎜
⎝

𝛾(𝑛 + 1, 𝑘 + 1) −
𝑘−1
∑
𝑗=0

𝜃𝑘,𝑘−𝑗𝜃𝑛,𝑛−𝑗𝑣𝑗
⎞⎟⎟
⎠

, 𝑘 = 0, … , 𝑛 − 1,

𝑣𝑛 = 𝛾(𝑛 + 1, 𝑛 + 1) −
𝑛−1
∑
𝑗=0

𝜃2
𝑛,𝑛−𝑗𝑣𝑗.

Important

Thus the one-step prediction can be easily computed (fast) without any matrix operations
(but only using basic operations).

Thus this algorithm relies on the recursive computation of 𝜃𝑛,𝑗 and 𝑣𝑛 using previously computed
values, and it features no requirements of matrix inversion, just basic operations, and easy updat-
ing. Also, stationarity is not necessary. Essentially, this is the Gram–Schmidt orthogonalization
procedure and it is useful in maximum likelihood estimation.

Tip

A similar (but better) algorithm is a Kalman filter, which we will discuss in the next course.

We can also simplify the innovations algorithm for MA (𝑞) processes, as the coefficients
𝜃𝑛,𝑞+1, 𝜃𝑛,𝑞+2, … are zero, because 𝔼 𝑋𝑛+1(𝑋𝑘+1 − 𝑋̂𝑘+1) for 𝑛 − 𝑘 > 𝑞

9.4.3 Recursive prediction for ARMA model

For MA (𝑞), the innovations algorithm simplifies due to the simple autocorrelation structure. On
the other hand, ARMA autocorrelation is complicated, but a question arises whether we could
transform it into an MA model. Thus consider ARMA (𝑝, 𝑞)

Φ (𝖡) X𝑡 = Θ(𝖡)ε𝑡, {ε𝑡} ∼ WN (0, 𝜎2) .

For 𝑚 = max(𝑝, 𝑞), define the transformed process

W𝑡 = 𝜎−1X𝑡, 𝑡 = 1, … , 𝑚
W𝑡 = 𝜎−1Φ (𝖡) X𝑡, 𝑡 > 𝑚.
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The linear spans of X1, … , X𝑛 and W1, … , W𝑛 are the same, so now we can apply the algorithm to
W𝑡 to get

Ŵ𝑛+1 =
min(𝑝,𝑞)

∑
𝑗=1

𝜃𝑛𝑗(W𝑛+1−𝑗 − Ŵ𝑛+1−𝑗),

where the coefficients 𝜃𝑛𝑗 and mean square error 𝑟𝑛 are found by the recursive procedures. So W𝑡
is MA (𝑞) and thus 𝜃𝑛𝑗 = 0 for 𝑗 > 𝑞. Now we would like to obtain X̂𝑡 from Ŵ𝑡. We can project
each side of the defining equation for W𝑡 on X1, … , X𝑡−1 to get

Ŵ𝑡 = 𝜎−1X̂𝑡, 𝑡 = 1, … , 𝑚,
Ŵ𝑡 = 𝜎−1 (X̂𝑡 − 𝜑1X𝑡−1 − ⋯ − 𝜑𝑝X𝑡−𝑝) , 𝑡 > 𝑚,

and thus X𝑡 − X̂𝑡 = 𝜎(W𝑡 − Ŵ𝑡), which gives

X̂𝑛+1 =
𝑛

∑
𝑗=1

𝜃𝑛𝑗(X𝑛+1−𝑗 − X̂𝑛+1−𝑗), 1 ≤ 𝑛 ≤ 𝑚

X̂𝑛+1 = 𝜑1X𝑛−1 + ⋯ + 𝜑𝑝X𝑛−𝑝 +
𝑛

∑
𝑗=1

𝜃𝑛𝑗(X𝑛+1−𝑗 − X̂𝑛+1−𝑗), 𝑛 ≥ 𝑚

and finally 𝑣𝑛 = 𝔼 (X𝑛+1 − X̂𝑛+1)
2

= 𝜎2𝑟𝑛.

Tip

To summarize, we derived a way to make a one-step prediction for MA (𝑞) and then used
this in ARMA model, where the AR part is easy to predict.

9.4.4 ℎ-step prediction

Given data X1, … , X𝑛, we want to predict X𝑛+ℎ using X1, … , X𝑛 – via best linear prediction – which
leads us to solve

𝜞𝝋(ℎ) = 𝜸(ℎ).

For this task, we can continue the iteration of the innovations algorithm to ℎ-step prediction

X̂𝑛+ℎ(𝑛) =
𝑛+ℎ−1

∑
𝑗=ℎ

𝜃𝑛+ℎ−1,𝑗(X𝑛+ℎ−𝑗 − X̂𝑛+ℎ−𝑗(𝑛 + ℎ − 𝑗 − 1))

with squared error

𝑣𝑛+ℎ−1 = 𝛾(𝑛 + ℎ, 𝑛 + ℎ) −
𝑛+ℎ−2

∑
𝑗=ℎ−1

𝜃2
𝑛+ℎ−1,𝑛−𝑗𝑣𝑗.

Values of 𝜽(𝑛) are finally obtained by continued iteration.
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9.4.4.1 Limiting behavior of the ℎ-step best linear prediction

Now let ℎ → ∞. What is then the behavior of the prediction and its error? We have that

𝝋(ℎ) = 𝜞−1𝜸(ℎ),

and often 𝛾(ℎ) as ℎ → ∞ (e.g., for stationary ARMA). Hence 𝜑(ℎ) → 0 and 𝑋̂𝑛+ℎ(𝑛) → 0 as ℎ → ∞.
This implies the convergence to the mean of the series. Under stationarity, the prediction error
is

𝛾(0) − 𝜸(ℎ)⊤𝜞−1𝜸(ℎ) → 𝛾(0)

as ℎ → ∞.

Warning

Thus long-term forecasts have approximately the same degree of uncertainty as if no data
were observed.

9.4.5 Prediction with trend

Now consider a model with a deterministic trend

Y𝑡 = 𝜇𝑡 + X𝑡,

where X𝑡 is stationary and, for example, 𝜇𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑠(𝑡). Then we have data Y1, … , Y𝑛 and
our goal is to predict Y𝑛+ℎ by Ŷ𝑛+ℎ(𝑛), so we extrapolate the trend (which can be either known
or estimated) and then predict by

Ŷ𝑛+ℎ(𝑛) = 𝜇𝑛+ℎ + X̂𝑛+ℎ(𝑛)

where X̂𝑛+ℎ(𝑛) is constructed as the ℎ-step prediction from X𝑡 = Y𝑡 − 𝜇𝑡, 𝑡 = 1, … , 𝑛.

9.4.6 Prediction errors and intervals

We can derive the following asymptotic behavior

Ŷ𝑛+ℎ(𝑛) − 𝜇𝑛+ℎ = X̂𝑛+ℎ(𝑛) → 0, ℎ → ∞

and keep in mind, that in the limit we predict by extrapolating the trend. Error is then given
by

𝑌̂𝑛+ℎ(𝑛) − 𝑌𝑛+ℎ = 𝑋̂𝑛+ℎ(𝑛) − 𝑋𝑛+ℎ,

thus the mean squared prediction error is the same as for X̂𝑛+ℎ(𝑛) and it converges to the series
variance 𝛾(0). The trend will be estimated with a parametric estimation error of order 𝑛 − 1,
comparatively smaller than the prediction error.
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Note

Our prediction was simply constructed as a best linear prediction and as such we made no
assumptions on the distribution of our data.

If the data are Gaussian, then

X𝑛+ℎ | (X1, … , X𝑛) ∼ 𝒩 (X̂𝑛+ℎ(𝑛), 𝔼 (X𝑛+ℎ − X̂𝑛+ℎ(𝑛))
2
) ,

where the variance is 𝑣𝑛+ℎ−1, or equivalently 𝛾(0) − 𝜸(ℎ)⊤𝜞−1𝜸(ℎ). Gaussian prediction interval
with coverage 1 − 𝛼 is then given by

(Ŷ𝑛+ℎ(𝑛) − 𝑐1−𝛼/2𝑣1/2
𝑛+ℎ−1, Ŷ𝑛+ℎ(𝑛) + 𝑐1−𝛼/2𝑣1/2

𝑛+ℎ−1)

with 𝑐1−𝛼/2 being the (1 − 𝛼/2)-quantile of 𝒩 (0, 1).

Tip

It is a good practice to usewider prediction intervals (80% or 90%) – using too strict intervals
makes (a bit) less sense.

9.5 Prediction of ARMA processes with infinite past

Recall a AR (𝑝) model given by

X𝑡 = 𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡

andwewant to predictX𝑛+1 based onX1, … , X𝑛, 𝑛 ≥ 𝑝. Best linear prediction is then given trivially
by the autoregressive formulation

X̂𝑛+1 = 𝜑1X𝑛 + ⋯ + 𝜑𝑝X𝑛−𝑝+1.

9.5.1 ℎ-step prediction in AR process

Now we want to predict X𝑛+ℎ given X1, … , X𝑛, 𝑛 ≥ 𝑝. We can obtain the projection X̂𝑛+ℎ(𝑛) =
𝖯𝑛X𝑛+ℎ of X𝑛+ℎ on X1, … , X𝑛 by projecting first on X1, … , X𝑛+ℎ−1, then we take the projection
𝖯𝑛+ℎ−1X𝑛+ℎ and again project it on X1, … , X𝑛+ℎ−2, etc., and finally on X1, … , X𝑛, from which we
obtain

X̂𝑛+ℎ(𝑛) = 𝖯𝑛X𝑛+ℎ = ⋯ = 𝖯𝑛𝖯𝑛+1 … 𝖯𝑛+ℎ−1X𝑛+ℎ.

As an example, the two-steps-ahead best prediction is

X̂𝑛+2(𝑛) = 𝜑1X̂𝑛+1 + 𝜑2X𝑛 + ⋯ + 𝜑𝑝X𝑛−𝑝+2
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and analogously, the ℎ-steps-ahead best prediction is

X̂𝑛+ℎ(𝑛) = 𝜑1X̂𝑛+ℎ−1(𝑛) + ⋯ + 𝜑𝑝X̂𝑛+ℎ−𝑝,

where we set X̂𝑡 = X𝑡 for 𝑡 = 1, … , 𝑛. Hence we have a straightforward recursive computation.

9.5.2 Prediction with infinite past

Recall that prediction in AR (𝑝) is autoregression on 𝑝 preceding series values. Now also remem-
ber that for an invertible MA (𝑞) process we may write

ε𝑡 = Θ(𝖡)−1X𝑡 =
∞
∑
𝑗=0

𝜋𝑗X𝑡−𝑗,

which is an autoregression on the infinite past (the process must be invertible). Thus assume now
the infinite past

X𝑛, X𝑛−1, … , X1, X0, X−1, …
is available and investigate X̃𝑛+ℎ(𝑛) = 𝖯̃𝑛X𝑛+ℎ the projection of X𝑛+ℎ on the infinite past. Consider
a full ARMA (𝑝, 𝑞) model

Φ (𝖡) X𝑡 = Θ (𝖡) ε𝑡

and let it be causal and invertible, i.e. we can write

X𝑛+ℎ =
∞
∑
𝑗=0

𝜓𝑗ε𝑛+ℎ−𝑗, ε𝑛+ℎ =
∞
∑
𝑗=0

𝜋𝑗X𝑛+ℎ−𝑗.

By projecting both sides in the AR (∞) presentation on the past we get

0 = X̂𝑛+ℎ(𝑛) +
∞
∑
𝑗=1

𝜋X̂𝑛+ℎ−𝑗(𝑛),

therefore

X̂𝑛+ℎ(𝑛) = −
ℎ−1
∑
𝑗=1

𝜋𝑗X̂𝑛+ℎ−𝑗 −
∞
∑
𝑗=ℎ

𝜋𝑗X𝑛+ℎ−𝑗,

which gives us recursive computation of the prediction. The mean squared prediction error is
again 𝔼 (X𝑛+ℎ − X̂𝑛+ℎ(𝑛))

2
. Also, the past

X𝑛, X𝑛−1, … , X1, X0, X−1, …

is equivalent to
ε𝑛, ε𝑛−1, … , ε1, ε0, ε−1, …

as the subspaces generated by both sequences coincide due to causality and invertibility. By projecting
both sides in the MA (∞) representation on the past we get (recall the orthogonality)

X̂𝑛+ℎ(𝑛) =
∞
∑
𝑗=0

𝜓𝑗𝖯̃𝑛ε𝑛+ℎ−𝑗 =
∞
∑
𝑗=ℎ

𝜓𝑗ε𝑛+ℎ−𝑗.
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From this, we may obtain that the mean square prediction error is

𝔼 (X𝑛+ℎ − X̂𝑛+ℎ(𝑛))
2

= 𝔼 ⎛⎜⎜
⎝

ℎ−1
∑
𝑗=0

𝜓𝑗ε𝑛+ℎ−𝑗
⎞⎟⎟
⎠

= 𝜎2
ℎ−1
∑
𝑗=0

𝜓2
𝑗 .

As we consider the prediction horizon ℎ → ∞, from

X̂𝑛+ℎ(𝑛) =
∞
∑
𝑗=ℎ

𝜓𝑗ε𝑛+ℎ−𝑗

and the fact that the 𝜓-weights decay exponentially, we get that X̂𝑛+ℎ(𝑛) quickly converges to the
mean (in the 𝐿2 sense). As for the MSPE, we see that

𝔼 (X𝑛+ℎ − X̂𝑛+ℎ(𝑛))
2

= 𝜎2
ℎ−1
∑
𝑗=0

𝜓2
𝑗 → 𝜎2

∞
∑
𝑗=0

𝜓2
𝑗 = 𝛾(0).

Caution

Hence themean squared prediction error quickly converges to the variance of the series. This
implies that short-term predictions are good, but long-term predictions behave like without
any observed data.

9.5.3 Truncated prediction in ARMA models with finite past

Lastly, consider finite observed past X1, … , X𝑛 instead of infinite past and assume 𝑛 sufficiently
large. We use the same relation as with infinite past

X̂𝑛+ℎ(𝑛) = −
ℎ−1
∑
𝑗=1

𝜋𝑗X̂𝑛+ℎ−𝑗 −
∞
∑
𝑗=ℎ

𝜋𝑘X𝑛+ℎ−𝑗,

but set X𝑡 = 0 for 𝑡 ≤ 0 (also, their weights are small if 𝑛 is large), that is we use the truncated
forecast

X̂𝑛+ℎ(𝑛) = −
ℎ−1
∑
𝑗=1

𝜋𝑗X̂𝑛+ℎ−𝑗 −
𝑛+ℎ−1

∑
𝑗=ℎ

𝜋𝑘X𝑛+ℎ−𝑗,

which again leads to recursive computation.
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10 ARIMA, Seasonal ARMA and SARIMA
Models

10.1 ARIMA models

One ARIMA model that we can see is the random walk AR (1), i.e. X𝑡 = 𝜑1X𝑡−1 + ε𝑡, with 𝜑1 = 1,
thus

X𝑡 = X𝑡−1 + ε𝑡 =
𝑡

∑
𝑗=1

ε𝑡, 𝑡 = 1, 2, …

Figure 10.1: Realization of random walk

What’s more, we can compare different AR models and notice the differences in their scales, sta-
tionarity vs increasing variance and stable behavior vs temporary, transient trends.

Figure 10.2: Different AR models (some stationary and some not)
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As we have discussed before, the correlogram of the random hints (falsely) at a complicated au-
tocorrelation structure (remember that it is misused in this case).

Figure 10.3: ACF of random walk

We can see the same behavior in global temperature data, which features similar temporary
stochastic trends and even the acf is a look-alike.

data(gtemp,package="astsa")
par(mfrow=c(1,2))
plot(gtemp,ylab="Global temperature")
acf(gtemp)

101



Time

G
lo

ba
l t

em
pe

ra
tu

re

1880 1940 2000

−
0.

4
0.

2

0 5 10 15 20

−
0.

2
0.

4
1.

0

Lag

A
C

F

Series  gtemp

Figure 10.4: Global temperature data

10.1.1 Non-stationarity of random walk

Recall that the random walk

X𝑡 = X𝑡−1 + ε𝑡 =
𝑡

∑
𝑗=1

ε𝑡, 𝑡 = 1, 2, …

has mean 𝔼 𝑋𝑡 = 𝔼 ∑𝑛
𝑗=1 𝜀𝑗 = 0 and

𝛾(𝑡, 𝑡) = var⎛⎜⎜
⎝

𝑡
∑
𝑗=1

ε𝑗
⎞⎟⎟
⎠

= 𝑡𝜎2 (10.1)

𝛾(𝑠, 𝑡) = 𝔼 ⎛⎜⎜
⎝

𝑠
∑
𝑗=1

ε𝑗
𝑡

∑
𝑗=1

ε𝑗
⎞⎟⎟
⎠

= min(𝑠, 𝑡)𝜎2. (10.2)

Notice, that the random walk is not stationary but the difference

X𝑡 − X𝑡1
= ε𝑡

is a white noise sequence, hence it is stationary. This suggests that differencing could lead to
stationarity.

10.1.2 Differencing time series

Let us define the first difference as

ΔX𝑡 = X𝑡 − X𝑡−1 = X𝑡 − 𝖡X𝑡 = (1 − 𝖡)X𝑡
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and 𝑑-th difference
Δ𝑑X𝑡 = Δ … ΔX𝑡 = (1 − 𝖡)𝑑X𝑡.

One can realize that differencing

• preserves stationarity: if X𝑡 is stationary, then (1 − 𝖡)𝑑X𝑡 is also stationary;
• introduces stationarity:

– with deterministic trends: if 𝜇𝑡 is a polynomial of order 𝑑 and X𝑡 is stationary, then
(1 − 𝖡)𝑑(𝜇𝑡 + X𝑡) is stationary (with constant mean);

– with stochastic trend: random walk becomes stationary after differencing.

Now although differencingmay lead to stationarity, it can also give rise to complicated covariance
structure if overused. One should consider the principle of parsimonywhich says thatmodels should
be as simple as possible (but not any simpler).

Figure 10.5: The effect of differencing

10.1.3 ARIMA model

Definition 10.1. A process X𝑡 is said to be ARIMA (𝑝, 𝑑, 𝑞) (integrated ARMA) if Δ𝑑X𝑡 = (1 −
𝖡)𝑑X𝑡 is ARMA (𝑝, 𝑞).

We shall again use the notation

Φ (𝖡) (1 − 𝖡)𝑑X𝑡 = Θ(𝖡)ε𝑡,

then one can realize that random walk is ARIMA (0, 1, 0), or I(1). If the underlying model is
ARMA plus mean (instead of just ARMA), i.e., 𝔼 (Δ𝑑X𝑡) = 𝜇, then Φ𝖡(Δ𝑑X𝑡 − 𝜇) = Θ (𝖡) ε𝑡,
hence

Φ (𝖡) (1 − 𝖡)𝑑X𝑡 = 𝛿 + Θ(𝖡)ε𝑡,
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where 𝛿 = 𝜇(1−𝜑1−⋯−𝜑𝑝). Also, in this case Δ𝑑X𝑡−𝜇 = Δ𝑑(X𝑡−𝜇𝑡𝑑/𝑑!), i.e., X𝑡 has a polynomial
trend. Now consider the following example showcasing the first difference on global temperature
data.

require(forecast)

Loading required package: forecast

Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo

ggtsdisplay(diff(gtemp))
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Figure 10.6: Stationary-looking difference of global temperatures

10.1.4 Estimating ARIMA models

Clearly, after differencing 𝑑 times, we obtain ARMA (𝑝, 𝑞) from ARIMA (𝑝, 𝑑, 𝑞). Then we can
estimate the coefficients, mean and white noise variance of the differenced process by methods
for ARMA models (maximum likelihood estimation, conditional least squares etc.). Also, we do
not need to center the ARIMA process, as differencing will remove additive constants, see

Δ(X𝑡 − 𝑎) = ΔX𝑡.

Let now Y𝑡 = Δ𝑑X𝑡 be an ARMAmodel. We can then obtain forecasts of Y𝑡 bymethods for ARMA
processes. Forecasts of X𝑡 can then be obtained by “anti-differencing” – consider 𝑑 = 1, then
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• we have observed data until time 𝑛;
• we predict Y𝑛+1 by Ŷ𝑛+1;
• since X𝑛+1 = X𝑛 + Y𝑛+1, predict X𝑛+1 by X̂𝑛+1 = X𝑛 + Ŷ𝑛+1;
• Predict Y𝑛+2 by Ŷ𝑛+2(𝑛);
• Since X𝑛+2 = X𝑛+1 + Y𝑛+2, predict X𝑛+2 by

X̂𝑛+2(𝑛) = X̂𝑛+1 + Ŷ𝑛+2(𝑛) = X𝑛 + Ŷ𝑛+1 + Ŷ𝑛+2(𝑛);

• etc.

Example 10.1 (Random walk with drift). Consider random walk

X𝑡 = 𝛿 + X𝑡−1 + ε𝑡, i.e. Y𝑡 = ΔX𝑡 = 𝛿 + ε𝑡

with X0 = 0. We shall also have observed data X1, … , X𝑛 and compute one-step-ahead forecast
(which is a projection on lin {1, X1, … , X𝑛})

X̂𝑛+1 = 𝖯𝑛X𝑛+1 = 𝖯𝑛(𝛿 + X𝑛 + ε𝑛+1) = 𝛿 + X𝑛.

Two-step-ahead forecast has form X̂𝑛+2(𝑛) = 𝛿 + X̂𝑛+1 = 2𝛿 + X𝑛 and similarly 𝑚-step-ahead
forecast goes like X̂𝑛+𝑚(𝑛) = 𝑚𝛿 + X𝑛. Compared with stationary AR (1), X𝑡 = 𝛿 + 𝜑1X𝑡−1 + ε𝑡
with ∣𝜑1∣ < 1, we see (by successively projecting on the past until 𝑛 + 𝑚 − 1, 𝑛 + 𝑚 − 2, … , 𝑛 and
using 𝜇 = 𝛿/(1 − 𝜑1)) that

X̂𝑛+𝑚(𝑛) = 𝛿
1 − 𝜑𝑚

1
1 − 𝜑1

+ 𝜑𝑚
1 X𝑚 = 𝜇 + 𝜑𝑚

1 (X𝑛 − 𝜇),

from which we get different asymptotic behavior (as 𝑚 → ∞):

• straight line vs constant;
• persistent vs vanishing effect on X𝑛.

Now to obtain prediction errors, recall that

X𝑛 = 𝑛𝛿 +
𝑛

∑
𝑗=1

ε𝑗 & X𝑛+𝑚 = 𝑚𝛿 + X𝑛 +
𝑛+𝑚
∑

𝑗=𝑛+1
ε𝑗

and the prediction error is

𝔼 (X𝑛+𝑚 − X̂𝑛+𝑚(𝑛))
2

= 𝔼 ⎛⎜⎜
⎝

𝑛+𝑚
∑

𝑗=𝑛+1
ε𝑗

⎞⎟⎟
⎠

2

= 𝑚𝜎2.

Also remember that for a stationary AR (1) model, we have seen that

𝔼 (X𝑛+𝑚 − X̂𝑛+𝑚(𝑛))
2

= 𝜎2 1 − 𝜑2𝑚
1

1 − 𝜑2
1

,

which also shows different asymptotic behavior (as 𝑚 → ∞) of growing (or diverging) vs con-
verging prediction errors.
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Example 10.2 (IMA(1, 1) and exponential smoothing). Consider an ARIMA (0, 1, 1), or IMA(1, 1)
model,

X𝑡 = X𝑡−1 + ε𝑡 − 𝜆ε𝑡−1

with ∣𝜆∣ < 1, for 𝑡 = 1, 2, … and X0 = 0. Now

X𝑡 − X𝑡−1 = ε𝑡 − 𝜆ε𝑡−1

has an invertible representation ∑∞
𝑗=0 𝜆𝑗𝖡𝑗(X𝑡 − X𝑡−1) = ε𝑡. Then for large 𝑡 we can approximate

(set X𝑡 = 0, 𝑡 ≤ 0)

X𝑡 =
∞
∑
𝑗=1

(1 − 𝜆)𝜆𝑗−1X𝑡−𝑗 + ε𝑡.

Now approximate one-step prediction by

X̃𝑛+1 =
∞
∑
𝑗=1

(1 − 𝜆)𝜆𝑗−1X𝑛+1−𝑗 = (1 − 𝜆)X𝑛 + 𝜆X̃𝑛.

Thus the forecast is a linear combination of the old forecast and the new observation, which is also
called exponentially weighted moving average (EWMA).

Tip

This is then equivalent to Holt’s linear method, as we’ve seen before.

10.2 Seasonal ARMA models

Seasons are important in applications: economics, environment, etc. We have so far seen

• Classical decomposition;
• Seasonal indicators, harmonic functions;
• STL;
• Holt–Winters,

but often, there is a strong dependence on the past at multiples of some seasonal lag 𝑠 (e.g., 𝑠 = 12
months). At the same time, there is some variation (beyond fixed seasonal effects) Hence our
goal becomes to incorporate this into ARMA models

One can realize that seasonal lags correspond to powers of the backshift operator 𝖡𝑗𝑠, e.g. 𝖡12X𝑡 =
X𝑡−12 is the value one year ago for monthly time series. We can then define the seasonal autore-
gressive operator

Φ∗(𝖡𝑠) = 1 − 𝜑∗
1𝖡𝑠 − 𝜑∗

2𝖡2𝑠 − ⋯ − 𝜑∗
𝑃𝖡𝑃𝑠

and seasonal moving average operator

Θ∗(𝖡𝑠) = 1 + 𝜃∗
1𝖡𝑠 + ⋯ + 𝜃∗

𝑄𝖡𝑄𝑠,
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from which we obtain pure seasonal ARMA models by combining

Φ∗(𝖡𝑠)X𝑡 = Θ∗(𝖡𝑠)ε𝑡

Note that pure seasonal models only include powers of 𝖡𝑠, but the dependence at other than
seasonal lags is also needed (e.g., previous month). Thus we combine both seasonal and non-
seasonal (typically shorter lag) dependence to get multiplicative seasonal ARMAmodel

Φ(𝖡)Φ∗(𝖡𝑠)X𝑡 = Θ(𝖡)Θ∗(𝖡𝑠)ε𝑡.

As an example, we can take a look at ARMA (0, 1) (0, 1)12

X𝑡 = 0.8X𝑡−12 + ε𝑡 − 0.5ε𝑡−1.

Figure 10.7: Seasonal ARMA model ARMA (0, 1) (0, 1)12

10.2.1 Estimation and prediction

Clearly, the seasonal ARMA model is an ARMA model with special AR and MA polynomials,
which puts constraints on the coefficients (thus reduces free parameters), e.g.

(1 − 𝜑∗
1𝖡12)(1 − 𝜑1𝖡)X𝑡 = ε𝑡

is an AR (13) model but has only two parameters. Estimation procedures are then similar to non-
seasonal ARMA (MLE etc.) but they exploit these parameter constraints (which gives us fewer
parameters to estimate). Lastly, prediction is similar as with the usual ARMA model.
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10.3 Seasonal ARIMA models

Recall the CO2 series, see Example 5.2.

Figure 10.8: Time series of 𝐶𝑂2 concentration

Now by multiple differencing, we get Figure 10.9, where we can see that while autocorrelation 𝜌
at seasonal lags decreases slowly, with the seasonal differencing we get a fast decrease.

Figure 10.9: Seasonal differencing of 𝐶𝑂2 series

108



10.3.1 Multiplicative seasonal ARIMA models

Seasonal differencing is defined by

(1 − 𝖡𝑠)X𝑡 = X𝑡 − X𝑡−𝑠,

e.g. (1−𝖡12)X𝑡 = X𝑡 −X𝑡−12 (beware, it is not (1−𝖡)12 = Δ12). Higher-order seasonal differences
are then (1−𝖡𝑠)𝐷𝑋𝑡. Nowwe can combine seasonal differencing, ordinary differencing, seasonal
and ordinary AR and MA modeling.

Definition 10.2 (SARIMAmodel). The multiplicative seasonal autoregressive integrated moving
average (SARIMA) model is given by

Φ∗(𝖡𝑠)Φ(𝖡)(1 − 𝖡𝑠)𝐷(1 − 𝖡)𝑑X𝑡 = 𝛿 + Θ∗(𝖡𝑠)Θ(𝖡)ε𝑡,

where ε𝑡 is white noise and Φ, Φ∗, Θ, Θ∗ are polynomials of order 𝑝, 𝑃, 𝑞, 𝑄 respectively, which we
denote by ARIMA (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)𝑠.

Example 10.3 (ARIMA (0, 1, 1) (0, 1, 1)12). Consider a model given by

(1 − 𝖡12)(1 − 𝖡)X𝑡 = Θ∗(𝖡12)Θ(𝖡)ε𝑡,

where Θ∗(𝖡12) = 1 + 𝜃∗
1𝖡12 and Θ𝖡 = 1 + 𝜃1𝖡. By expanding and rearranging we get

X𝑡 = X𝑡−1 + X𝑡−12 − X𝑡−13 + ε𝑡 + 𝜃1ε𝑡−1 + 𝜃∗
1ε𝑡−12 + 𝜃1𝜃∗

1ε𝑡−13.

Due to the multiplicative nature of the model, the coefficient at ε𝑡−13 is 𝜃1𝜃∗
1 rather than a free

parameter.

10.3.2 Estimation and forecasting or SARIMA models

First, one should difference the series according to the model (take 𝑑 ordinary and 𝐷 seasonal
differences), then estimate the corresponding SARMA model (i.e., ARMA with a special form of
the polynomials) and lastly forecast the differenced series and anti-difference it.

10.4 Further reading

10.4.1 Long seasonal periods

SAR(I)MA models are suitable for short periods, e.g., 12 (or 4) for monthly (or quarterly) data
within years, 7 for daily data within weeks, 24 for hourly data within days etc. Long periods,
e.g., 365 for daily data within years, are not meaningful practically and not supported by stan-
dard software. In such cases, one should use harmonic (or other periodic) functions instead, see
forecasting with long seasonal periods.
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10.4.2 Constants, trends,… in integrated models

In non-differenced models, one can include the intercept (constant vertical shift of the series). In
the case of first-order differencing, the vertical shift is not estimable (differencing removes it) but
the slope of the linear trend is. Similarly, under differencing of order 𝑑, the vertical shift of the
series by a polynomial of degree < 𝑑 is not estimable; shift by 𝑡𝑑 is estimable but not permitted for
𝑑 > 1 by forecast::Arima (dangerous extrapolation), for more information see constants and
ARIMA models in R.

Also, the regression matrix in xreg (for regression plus AR(I)MA errors) must not be collinear
with the vertical shift and must not contain non-estimable terms (those whose 𝑑-th difference is
zero)
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11 SARIMA Model Building and Diagnostics

11.1 Model building and selection

The richness of the class of (S)AR(I)MA models is a double-edged sword – they are flexible but
also difficult to use:

• ARMA has two orders: AR order 𝑝, MA order 𝑞;
• ARIMA has one more order: order of difference 𝑑;
• seasonal ARMA has another two orders: seasonal AR order 𝑃, seasonal MA order 𝑄;
• SARIMA has one more order: order of seasonal difference 𝐷.

Nowweneed sensiblemodel-building strategies andmodel adequacy criteria. Thuswewill honor
the principle of parsimony: models should be as simple as possible but not simpler.

“All models are wrong but some are useful”

Also, recall that over-fitting and/or over-differencing leads to overly complicated models and in-
creased variance of estimates. Thus we should first plot the data. Then we may transform it
to make the variance constant if necessary and also possibly remove deterministic components
(trends, seasonality) if appropriate. Now we need to model the stochastic component, which can
be achieved with

• differencing appropriately (until stationary, not too much, use unit root tests if uncertain);
• starting with a simple model (white noise);
• performing diagnostics of residuals (acf, pacf, Box test);
• identifying orders and modifying the model (increase model complexity) to remedy;
• continuing until approximately white noise;
• possibly checking the model by slightly overfitting.

Last, but not least, we use themodel for prediction. But a questionmight arise whether we should
differentiate or not:

• if the series is non-stationary, differencing may make it stationary;
• if the series is stationary, differencing will preserve stationarity but complicate autocorrela-

tion (non-invertibility).

Recall that the randomwalk is an AR sequence with Φ(𝑧) = 1−𝑧, hence Φ has a unit root (Φ(1) =
0). The presence of a unit root among the roots of the AR polynomial implies non-stationarity
and thus the need to differentiate. Methods exist for hypothesis testing about unit roots with
hypotheses:

111



• null hypothesis 𝐻0: 1 is a root;
• alternative 𝐻1: all roots our outside the unit circle.

One can use, for example, the Dickey-Fuller test or Phillips-Perron test, which use non-standard
distributions of the test statistics (non-stationary data under the null hypothesis) and in R they
can be used with PP.test, or adf.test and pp.test in the package tseries.

11.2 Modal diagnostics

For model diagnostics, we consider the standardized residuals

̂e𝑡 = X𝑡 − X̂𝑡(𝛃̂)
𝑣𝑡−1(𝛃̂)1/2

,

where

• 𝛃̂ is an estimator (e.g. maximum likelihood) of all model parameters (AR, MA, coefficients,
white noise variance, possibly mean and covariates);

• 𝑣𝑡−1(𝛃̂) is the prediction error for X𝑡 from X1, … , X𝑡−1.

If the right model is used, then for large 𝑛 the residuals are approximately white noise, so we can
plot ACF to check for no correlation or use portmanteau tests (Ljung–Box test) to test the signifi-
cance of autocorrelations up to some lag (in R use function tsdiag). Also, check for approximate
normality of the residuals using the QQ plot, histogram,… (needed for prediction intervals).

11.3 Model order selection

Weneed an objective, whichwould quantitativelymeasuremodel adequacy because surely bigger
models provide a better fit – likelihood or least squares are always better in more complex models.
However, there is a price to pay as amore complexmodel increases the variance of estimates. Also,
we need to find a good compromise between fit and variance and penalize for complexity – that
is to maximize

(model fit) − (model complexity penalty),

or minimize
(model error) + (model complexity penalty).

To perform this optimization, we search in a set of candidate models to optimize the selection
criterion. Now it is needed to choose selection criteria – one of themostwidespread is theAkaike’s
Information Criterion (AIC), which is defined as

AIC = −2𝓁(𝛃̂) + 2𝑟,

where
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• 𝛃̂ denotes collectively all parameters (AR, MA coefficients, white noise variance, possibly
mean and regression coefficients);

• 𝑟 = dim(𝜷) is the number of parameters (e.g. 𝑟 = 1 + 1 + 𝑝 + 𝑞 for an ARMA (𝑝, 𝑞) model
with mean);

• 𝓁(𝛃) = log 𝑓 (X1, … , X𝑛; 𝛃) is the log-likelihood.

Our goal is then to select the model that has the smallest value of AIC (within a set of candidate
models, e.g., with orders up to some limits).

Caution

Note that we use selection criteria for models estimated from the same data, in particular, do
not compare models with different orders of differencing!

The use of pure AIC is discouraged as it does not penalize large models enough. Hence the cor-
rected AIC, denoted as AIC𝑐, is recommended

AIC𝑐 = −2𝓁(𝛃̂) + 2𝑟 𝑛
𝑛 − 𝑟 − 1.

Also one can use BIC (Bayesian Information Criterion, or Schwarz’s selection rule), which is defined
as

BIC = −2𝓁(𝛃̂) + 𝑟 log𝑛,

which again strictly penalizes large models and as such tends to select smaller models.

Tip

As a rule of thumb, AIC or AIC𝑐 is recommended to use for forecasting, whereas BIC is
better used for model estimation.
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12 Basic Parameter Estimators For ARMA
Models

12.1 Method of moments estimation

Consider an ARMA (𝑝, 𝑞) model

(X𝑡 − 𝜇) − 𝜑1(X𝑡−1 − 𝜇) − ⋯ − 𝜑𝑝(X𝑡−𝑝 − 𝜇) = ε𝑡 + 𝜃1ε𝑡−1 + ⋯ + 𝜃+ε𝑡−𝑞,

that is
Φ (𝖡) (X𝑡 − 𝜇) = Θ(𝖡)ε𝑡,

where {ε𝑡} ∼ WN (0, 𝜎2). Let our goal be to estimate the unknownparameters𝜑1, … , 𝜑𝑝, 𝜃1, … , 𝜃𝑞, 𝜇, 𝜎2

and we assume the order 𝑝, 𝑞 are known. Realize that the mean 𝜇 is easy to estimate from the
data

μ̂ = 𝐗.

Also, see that covariance function 𝛾 is also easy to estimate from data

γ̂(ℎ) = 1
𝑛 − ℎ − 1

𝑛−ℎ
∑
𝑖=1

(X𝑖 − 𝐗)(X𝑖+ℎ − 𝐗).

Now we can try to use it for the estimation of the parameters of the model. With the method
of moments, we try to choose parameters for which the theoretical moments are equal to the
empirical moments.

12.1.1 Yule-Walker estimation for AR model

Consider an AR (𝑝) model with mean 0,

Φ(𝖡)X𝑡 = ε𝑡, i.e. X𝑡 − 𝜑1X𝑡−1 − ⋯ − 𝜑𝑝X𝑡−𝑝 = ε𝑡.

Now for ℎ = 1, … , 𝑝, we get

𝛾(ℎ) = 𝔼 (X𝑡−ℎX𝑡)
= 𝔼 (X𝑡−ℎ(𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡))
= 𝛾(ℎ − 1)𝜑1 + ⋯ + 𝛾(ℎ − 𝑝)𝜑𝑝

115



and for ℎ = 0

𝛾(0) = 𝔼 (X2
𝑡 )

= 𝔼 (X𝑡(𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡))
= 𝛾(1)𝜑1 + ⋯ + 𝛾(𝑝)𝜑𝑝 + 𝜎2.

The Yule-Walker equations in matrix form can be now written as

𝜞(𝑝)𝝋 = 𝜸(𝑝), 𝛾(0) − ⟨𝜸(𝑝), 𝝋⟩ = 𝜎2. (12.1)

where
𝜞(𝑝) = (𝛾(𝑖 − 𝑗))𝑝

𝑖,𝑗=1 , 𝜸(𝑝) = (𝛾(1), … , 𝛾(𝑝))⊤, 𝝋 = (𝜑1, … , 𝜑𝑝)⊤.

We have already seen Yule-Walker equations (12.1) when calculating the autocorrelation function
of AR (𝑝), see Section 8.1, where 𝜑1, … , 𝜑𝑝 were known and we solved for 𝛾(ℎ). Now we solve
for 𝜑1, … , 𝜑𝑝 and also replace 𝛾(ℎ) by their corresponding estimators γ̂(ℎ). Clearly, Yule-Walker
estimators 𝛗̂ of 𝜑1, … , 𝜑𝑝 solve the first equation of (12.1)

𝚪̂(𝑝)𝛗̂ = 𝛄̂(𝑝)

and the estimator for 𝜎2 solves
σ̂2 = γ̂(0) − ⟨𝛄̂(𝑝), 𝛗̂⟩ .

Then, we can finally compute
𝛗̂ = (𝚪̂(𝑝))−1 𝛄̂(𝑝),

if the matrix is invertible. If 𝑝 is large or models with many different orders need to be estimated,
this may get computationally demanding – instead, the Durbin-Levinson recursive algorithm is
typically used.

Theorem 12.1. For a causal AR (𝑝) process, the Yule-Walker estimators satisfy

𝑛1/2(𝛗̂ − 𝝋) 𝑑⟶𝑛→∞ 𝒩 (0, 𝜎2 (𝜞(𝑝))−1)

and σ̂2 𝑃⟶𝑛→∞ 𝜎2.

Let X𝑡 be an AR (𝑝) process and 𝑛 be large. The distribution of 𝑛1/2(𝛗̂ − 𝝋) is approximately
𝒩 (0, 𝜎2 (𝚪̂(𝑝))−1). Now with the approximate probability 1 − 𝛼, the interval

(φ̂𝑗 − 𝑐1−𝛼/2𝑛−1/2σ̂ (𝚪̂(𝑝))1/2
𝑗𝑗 , φ̂𝑗 + 𝑐1−𝛼/2𝑛−1/2σ̂ (𝚪̂(𝑝))1/2

𝑗𝑗 )

covers the true value of 𝜑𝑗, where 𝑐1−𝛼/2 is the (1 − 𝛼/2)-quantile of the standard normal distribu-
tion.
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12.1.2 Method of moments estimation for general ARMA models

We can again compute the theoretical ACF, then the expressions depend on the parameters and
we can we can equate them to the empirical ACF. This means to solve nonlinear equations. For
example, consider MA (1):

• we have already seen that
𝜌(1) = 𝜃1

1 + 𝜃2
1

;

• then we can estimate 𝜃1 by solving

̂ρ(1) =
̂θ1

1 + ̂θ2
1

;

• and we will use the invertible solution (if it exists).

For higher-orderMAorARMAmodels, this quickly gets complicated (it is an inefficient estimator,
as we will see later).

12.2 Conditional least squares

Consider again the AR (𝑝) model

X𝑡 − 𝜇 = 𝜑1(X𝑡−1 − 𝜇) + ⋯ + 𝜑𝑝(X𝑡−𝑝 − 𝜇) + ε𝑡.

By subtracting μ̂ = 𝐗, we can ignore the constant level for now. Then X𝑡 − μ̂, 𝑡 = 𝑝 + 1, … , 𝑛 satisfy
a linear regression model:

• response is X𝑡 − μ̂;
• covariates are X𝑡−1 − μ̂, … , X𝑡−𝑝 − μ̂;
• coefficients are 𝜑1, … , 𝜑𝑝;
• uncorrelated errors 𝜀𝑡 with mean zero and variance 𝜎2 are assumed.

We then estimate the coefficients 𝜑1, … , 𝜑𝑝 by ordinary least squares, that is to minimize the fol-
lowing

𝑆0(𝝋) =
𝑛

∑
𝑡=𝑝+1

((X𝑡 − μ̂) − 𝜑1(X𝑡−1 − μ̂) − ⋯ − 𝜑𝑝(X𝑡−𝑝 − μ̂))
2

,

which is called conditional least squares as the first 𝑝 values are taken as fixed (and their randomness
is ignored). More specifically, in matrix notation we get

• response vector (length 𝑛 − 𝑝)

𝐘 = (X𝑝+1 − μ̂, … , X𝑛 − μ̂)⊤,

117



• covariate (predictor) matrix (of dimension (𝑛 − 𝑝) × 𝑝)

𝚵 = (Ξ𝑖𝑗), Ξ𝑖𝑗 = X𝑝+𝑖−𝑗 − μ̂,

• coefficient vector (length 𝑝)
𝝋 = (𝜑1, … , 𝜑𝑝)⊤,

• errors (length 𝑛 − 𝑝)
𝐞 = (ε𝑝+1, … , ε𝑛)⊤.

Then the regression model has the form

𝐘 = 𝚵𝝋 + 𝐞

and least-squares criterion reads as follows

𝑆0(𝝋) = ∥𝐘 − 𝚵𝝋∥2 .

12.2.1 Normal equations and relation to Yule-Walker

Recall that we can solve the following optimization problem

min𝝋 ∥𝐘 − 𝚵𝝋∥2 ,

which corresponds to “normal equations”

𝚵⊤𝚵𝝋 = 𝚵⊤𝐘.

For 𝑗 ≠ 𝑘, the (𝑗, 𝑘) entry of (𝑛 − 𝑝 − 1)−1𝚵⊤𝚵 is

1
𝑛 − 𝑝 − 1

𝑛−𝑝
∑
𝑖=1

(X𝑝+𝑖−𝑗 − 𝐗)(X𝑝+𝑖−𝑘 − 𝐗),

which is similar to γ̂(𝑗 −𝑘). Just as well, for the diagonal entries, we get similarity with γ̂(0). Thus
the OLS estimator is similar to the Yule-Walker estimator (if 𝑝 is small relative to 𝑛).

12.2.2 Conditional least squares for an autoregression model with unknown mean

We can rewrite the model

X𝑡 − 𝜇 = 𝜑1(X𝑡−1 − 𝜇) + ⋯ + 𝜑𝑝(X𝑡−𝑝 − 𝜇) + ε𝑡.

as
X𝑡 = 𝛼 + 𝜑1(X𝑡−1 − 𝜇) + ⋯ + 𝜑𝑝(X𝑡−𝑝 − 𝜇) + ε𝑡,
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where 𝛼 = (1 − 𝜑1 − ⋯ − 𝜑𝑝)𝜇. Now we can estimate both 𝝋 and 𝜇 (or 𝛼 now) with least squares.
This gives us a linear model with intercept 𝛼 and we can estimate 𝝋, 𝛼 by minimizing

𝑆0(𝝋, 𝛼) =
𝑛

∑
𝑡=𝑝+1

(X𝑡 − 𝛼 − 𝜑1X𝑡−1 − ⋯ − 𝜑𝑝X𝑡−𝑝)
2

,

then estimate 𝜎2 by σ̂2 = (𝑛 − 𝑝 − 1)−1𝑆0(𝛗̂, α̂). Consider now the least squares criterion for
AR (1)

𝑆0(𝜑1, 𝜇) =
𝑛

∑
𝑡=2

(X𝑡 − 𝜇 − 𝜑1(X𝑡−1 − 𝜇))2 ,

which we can differentiate with respect to 𝜇 to get

𝜇 = 1
(𝑛 − 1)(1 − 𝜑1)

⎛⎜
⎝

𝑛
∑
𝑡=2

X𝑡 − 𝜑1
𝑛

∑
𝑡=2

X𝑡−1
⎞⎟
⎠

.

For large 𝑛, we can use an approximation

1
𝑛 − 1

𝑛
∑
𝑡=2

X𝑡 ≈ 1
𝑛 − 1

𝑛
∑
𝑡=2

X𝑡−1 ≈ 𝐗,

thus, regardless of 𝜑1, μ̂ = 1
1−𝜑1

(𝐗 − 𝜑1𝐗) = 𝐗. What’s more, we can differentiate 𝑆0(𝜑1, 𝐗) w.r.t.
𝜑1 and solve to get

φ̂1 =
∑𝑛

𝑡=2(X𝑡 − 𝐗)(X𝑡−1 − 𝐗)
∑𝑛

𝑡=2(X𝑡−1 − 𝐗)2
.

Except for the term (X𝑛 − 𝐗)2 that is missing in the denominator, this is the same as ̂ρ(1), which
is the Yule-Walker estimator for 𝜌(1). Hence, for large 𝑛, OLS and YW are almost identical.
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13 Parameter Estimation in ARMA Models

13.1 Maximum likelihood estimation

Consider an ARMA (𝑝, 𝑞) model

(X𝑡 − 𝜇) − 𝜑1(X𝑡−1 − 𝜇) − ⋯ − 𝜑𝑝(X𝑡−𝑝 − 𝜇) = ε𝑡 + 𝜃1ε𝑡−1 + ⋯ + 𝜃𝑞ε𝑡−𝑞,

that is Φ (𝖡) (X𝑡 − 𝜇) = Θ (𝖡) ε𝑡, where {ε𝑡} ∼ WN (0, 𝜎2). Now let us assume we observe data
X1, … , X𝑛 and let our goal be to estimate unknown parameters

𝜷 = (
𝝋

⏞⏞⏞⏞⏞𝜑1, … , 𝜑𝑝,
𝜽

⏞⏞⏞⏞⏞𝜃1, … , 𝜃𝑞, 𝜇, 𝜎2)

given known orders 𝑝, 𝑞.

Note

Here, 𝜷 may also include other parameters of the deterministic trend 𝜇𝑡, e.g. regression co-
efficients for external covariates, see xreg in R.

Clearly, there are multiple possible approaches to the estimation:

• Method of moments: we can equate the theoretical moments to their empirical estimates and
solve for the parameters (e.g. Yule-Walker);

• Least squares: we can minimize the sum of squared distances between the observed values
and their model-based expectations;

• Maximum likelihood estimation.

Thus let the joint density of X1, … , X𝑛 be 𝑓 (𝑥1, … , 𝑥𝑛; 𝜷) = 𝑓 (𝒙; 𝜷) and we shall strive to find the
value of 𝜷 for which the likelihood ℒ (𝜷) = 𝑓 (X1, … , X𝑛; 𝜷) is maximal.

Advantages & Disadvantages of MLE

This approach of using MLE brings some advantages like efficiency (low variance), opti-
mality, clear justification of our results and a unified framework. Also often, the Gaussian
assumption is reasonable! But, on the other hand, it leads to possibly difficult optimization
(the solution is given implicitly and as such it requires iterative numerical procedure). Fur-
thermore, we need to choose a good starting point (and often use other estimators for this
alone).
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13.1.1 Gaussian likelihood function

Let us assume the process is now Gaussian and data 𝐗 = (X1, … , X𝑛)⊤ are jointly Gaussian with
mean 𝜇 and covariance matrix 𝜞 . The likelihood function is then

ℒ (𝜷) = 1
(2𝜋)𝑛/2 |𝜞|1/2 exp(−(𝐗 − 𝜇)⊤𝜞−1(𝐗 − 𝜇)

2 ) ,

which the MLE approach maximizes.

13.1.1.1 Maximum likelihood estimation for AR (1) process

Consider now a case where X𝑡, 𝑡 = 1, … , 𝑛 follow an AR (1) model, i.e. X𝑡 = 𝜇 + 𝜑1(X𝑡−1 − 𝜇) + ε𝑡,
and rewrite it again as a linear model

X𝑡 = 𝛼 + 𝜑1X𝑡−1 + ε𝑡,

where 𝛼 = 𝜇(1 − 𝜑1). The covariance matrix of (X1, … , X𝑛)⊤ has then entries

Γ𝑖𝑗 = 𝜎2

1 − 𝜑2
1

𝜑∣𝑖−𝑗∣
1 .

Note that this leads to a difficult matrix inverse and determinant computation in the likelihood
function

1
(2𝜋)𝑛/2 |𝜞|1/2 exp(−(𝐗 − 𝜇)⊤𝜞−1(𝐗 − 𝜇)

2 ) .

Note

Notice the difference from situations with independent data!

For fixed parameter values, it is still difficult to evaluate the likelihood, henceweuse conditioning

𝑓 (𝑥1, … , 𝑥𝑛; 𝜷) = 𝑓 (𝑥𝑛 | 𝑥𝑛−1, … , 𝑥1; 𝜷)𝑓 (𝑥𝑛−1, … , 𝑥1; 𝜷)

= ⎛⎜
⎝

𝑛
∏
𝑖=2

𝑓 (𝑥𝑖 | 𝑥𝑖−1, … , 𝑥1; 𝜷)⎞⎟
⎠

𝑓 (𝑥1; 𝜷).

For Gaussian data, all conditional distributions are still Gaussian and for 𝑖 ≥ 2, the conditional
expectation and variance are

𝔼 (X𝑖 | X𝑖−1, … , X1) = 𝛼 + 𝜑1X𝑖−1, var (X𝑖 | X𝑖−1, … , X1) = 𝜎2,

hence 𝑓 (𝑥𝑖 | 𝑥𝑖−1, … , 𝑥1; 𝜷) ∼ 𝒩 (𝛼 + 𝜑1𝑥𝑖−1, 𝜎2). What’s more, the (unconditional) distribution of
X1 is, too, Gaussian with mean 𝜇 = 𝛼/(1 − 𝜑1) and variance (by causality)

𝔼 (X1 − 𝜇)2 = 𝔼 ⎛⎜⎜
⎝

∞
∑
𝑗=0

𝜑𝑗
1ε1−𝑗

⎞⎟⎟
⎠

2

= 𝜎2

1 − 𝜑2
1

.
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Hence 𝑓 (𝑥1) ∼ 𝒩 (𝛼/(1 − 𝜑1), 𝜎2/(1 − 𝜑2
1)) and put together, the likelihood is

ℒ (𝜷) = ⎛⎜
⎝

𝑛
∏
𝑖=2

1
(2𝜋)1/2𝜎

exp(−(X𝑖 − 𝛼 − 𝜑1X𝑖−1)2

2𝜎2 )⎞⎟
⎠

× 1
(2𝜋)1/2𝜎/(1 − 𝜑2

1)1/2 exp⎛⎜
⎝

−(X1 − 𝛼/(1 − 𝜑1))2

2𝜎2/(1 − 𝜑2
1)

⎞⎟
⎠

.

As one can see, now it is easy to compute the likelihood given a set of parameter values. To solve
for optimal 𝜷, as usual, we define a log-likelihood (ignoring any terms independent of parameters)
to get

𝓁 (𝜷) = −
𝑛

∑
𝑖=2

(X𝑖 − 𝛼 − 𝜑1X𝑖−1)2

2𝜎2 − (X1 − 𝛼/(1 − 𝜑1))2

2𝜎2/(1 − 𝜑2
1)

− 𝑛 log𝜎 − 1
2 log(1 − 𝜑2

1),

which is clearly non-linear in parameters and as such needs to be maximized numerically.

Notice that all terms except the one for X1 have the same form in the likelihood function ℒ (𝜷),
thus we can use an alternative approach where we consider X1 as fixed. From this, we get a
conditional likelihood

ℒ (𝜷 | X1) = 𝑓 (X2, … , X𝑛 | X1; 𝜷)

=
𝑛

∏
𝑖=2

𝑓 (X𝑖 | X1, … , X𝑖−1; 𝜷)

=
𝑛

∏
𝑖=2

1
(2𝜋)1/2𝜎

exp(−(X𝑖 − 𝛼 − 𝜑1X𝑖−1)2

2𝜎2 )

and the conditional log-likelihood similarly becomes

𝓁 (𝜷 | X1) = −
𝑛

∑
𝑖=2

(X𝑖 − 𝛼 − 𝜑1X𝑖−1)2

2𝜎2 − (𝑛 − 1) log𝜎.

One can notice that this is the conditional least squares problem (or conditional sum) and that we
can solve this explicitly (as opposed to the implicit formulation before).

13.1.1.2 Maximum likelihood estimation for an autoregressive process

Now consider an AR (𝑝) process, i.e.

X𝑡 = 𝛼𝜑1X𝑡−1 + ⋯ + 𝜑𝑝X𝑡−𝑝 + ε𝑡,

for which the likelihood comes in the form

ℒ (𝜷) =
𝑛

∏
𝑖=𝑝+1

𝑓 (X𝑖 | X1, … , X𝑖−1; 𝜷)𝑓 (X1, … , X𝑝; 𝜷)

= ℒ (𝜷 | X1, … , X𝑝) 𝑓 (X1, … , X𝑝; 𝜷)
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with conditional densities

𝑓 (X𝑖 | X1, … , X𝑖−1; 𝜷) ∼ 𝒩 (𝛼 + 𝜑1𝑥𝑖−1 + ⋯ + 𝜑𝑝𝑥𝑖−𝑝, 𝜎2) .

The density 𝑓 (X1, … , X𝑝; 𝜷) is Gaussian with a complicated covariance matrix. Also, the condi-
tional likelihood ℒ (𝜷 | X1, … , X𝑝) leads to a least squares problem.

13.1.2 Evaluation of the likelihood function in the general case

In ARMA (𝑝, 𝑞) models, the likelihood ismuchmore complicated due toMA terms and it requires
a large non-diagonal matrix to be inverted and its determinant to be computed. Similarly to how
conditioning on previous values was useful in ARmodels, even in the general case, the likelihood
becomes a product of simpler terms (densities in this product correspond to independence in
data).

Tip

Note that we have already seen a transformation of series into uncorrelated variables via
innovations.

13.2 Recursive likelihood calculation using innovations

13.2.1 Innovations

Recall the innovations Z𝑖 = X𝑖 − X̂𝑖, where X̂𝑖 is the best linear prediction of X𝑖 from X1, … , X𝑖−1
(this corresponds to conditional expectation in the Gaussian case). Predictions X̂𝑖 can be ex-
pressed in the terms of previous observations X1, … , X𝑖−1 or in the terms of previous innovations
as

X̂𝑖 = 𝜇 +
𝑖−1
∑
𝑗=1

𝜑𝑖−1,𝑗(X𝑖−𝑗 − 𝜇) = 𝜇 +
𝑖−1
∑
𝑗=1

𝜃𝑖−1,𝑗(X𝑖−𝑗 − X̂𝑖−𝑗).

The innovations have the following properties:

• zero mean;
• variance (or prediction error) 𝔼 (X𝑖 − X̂𝑖)

2
= 𝑣𝑖−𝑖 = 𝑟𝑖−1𝜎2 for appropriate 𝑟𝑖−1 > 0;

• most importantly, they are uncorrelated (even independent in the Gaussian case) because
Z𝑗 ∈ lin {X1, … , X𝑗} and Z𝑘 ⟂ lin {X1, … , X𝑗} for 𝑗 < 𝑘.

The innovations 𝐙 = (Z1, … , Z𝑛)⊤ are obtained from the observations 𝐗 = (X1, … , X𝑛)⊤ by linear
transformation

𝐙 = 𝑨(𝐗 − 𝜇),
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where the 𝑛 × 𝑛 matrix 𝑨 is given as

𝑨 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ ⋅ ⋅ ⋅
−𝜃1,1 1 0 ⋯ ⋅ ⋅
−𝜃2,2 −𝜃2,1 1 0 ⋯ ⋅

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
−𝜃𝑛−2,𝑛−2 −𝜃𝑛−2,𝑛−3 ⋯ −𝜃𝑛−2,1 1 0
−𝜃𝑛−1,𝑛−1 −𝜃𝑛−1,𝑛−2 ⋯ −𝜃𝑛−1,2 −𝜃𝑛−1,1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Clearly, thematrix𝑨 is regular, hence the correspondence between the dataX𝑖 and the innovations
Z𝑖 = X𝑖 − X̂𝑖 is one-to-one. Thus they contain the same information and have the same likelihood.
Since the linear transformation preserves normality, i.e. if X1, … , X𝑛 are jointly Gaussian, then
Z1, … , Z𝑁 are too jointly Gaussian. All in all, Z𝑖 is Gaussian with mean zero and variance 𝜎2𝑟𝑖−1,
i.e.

𝑓 (𝑧𝑖; 𝜷) = 1
(2𝜋)1/2𝜎𝑟1/2

𝑖−1
exp⎛⎜

⎝
−

𝑧2
𝑖

2𝜎2𝑟𝑖−1
⎞⎟
⎠

,

thus Z𝑖’s are uncorrelated and by the Gaussian distribution properties they are even independent.
Hence, the joint density of 𝐙 = (Z1, … , Z𝑛)⊤ is the product of marginal densities

𝑓 (𝒛; 𝜷) = 𝑓 (𝑧1, … , 𝑧𝑛; 𝜷) =
𝑛

∏
𝑖=1

𝑓 (𝑧𝑖; 𝜷)

= 1
(2𝜋)𝑛/2𝜎𝑛 ∏𝑛

𝑖=1 𝑟1/2
𝑖−1

exp⎛⎜
⎝

−
𝑛

∑
𝑖=1

𝑧2
𝑖

2𝜎2𝑟𝑖−1

⎞⎟
⎠

.

The likelihood then becomes

ℒ (𝜷) = 1
(2𝜋)𝑛/2𝜎𝑛 ∏𝑛

𝑖=1 𝑟1/2
𝑖−1

exp⎛⎜
⎝

−
𝑛

∑
𝑖=1

Z2
𝑖

2𝜎2𝑟𝑖−1

⎞⎟
⎠

= 1
(2𝜋)𝑛/2𝜎𝑛 ∏𝑛

𝑖=1 𝑟1/2
𝑖−1

exp⎛⎜
⎝

−
𝑛

∑
𝑖=1

(X𝑖 − X̂𝑖)2

2𝜎2𝑟𝑖−1

⎞⎟
⎠

,

where X̂𝑖 and 𝑟𝑖−1 depend on the covariance structure of the series, i.e. on the parameters of the
model. For a given set of parameter values, the value of the likelihood function can be easily
computed, provided we can obtain X̂𝑖 and 𝑟𝑖−1. Then, the innovations algorithm can be used to
compute the one-step predictions X̂𝑖 and their errors 𝑣𝑖−1 = 𝜎2𝑟𝑖−1 recursively using simple linear
operations.

Tip

This can be used for any Gaussian series, not only ARMA processes. Also, another recursive
approach we might use is the Kálmán filter.
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13.2.2 Conditional least squares

For an ARMA (𝑝, 𝑞) model, one can condition on the first 𝑝 (or possibly more) values of the series
and then minimize ∑𝑛

𝑖=𝑝+1 ̂ε2
𝑖 (𝜷), where

̂ε𝑖(𝜷) =X𝑖 − 𝜇 − 𝜑1(X𝑖−1−𝜇) − ⋯ − 𝜑𝑝(X𝑖−𝑝 − 𝜇)
− 𝜃1 ̂ε𝑖−1(𝜷) − ⋯ − 𝜃𝑞 ̂ε𝑖−𝑞(𝜷)

for 𝑖 > 𝑝 and ̂ε𝑖(𝜷) = 0 for 𝑖 ≤ 𝑝. Afterward, we can compare the exact likelihood and condi-
tion least squares, since the exact likelihood uses the innovations 𝑍𝑖 (errors of predictions using
the complete observed history) and the conditional least squares use the residuals ̂𝜀𝑖 (residuals
obtained from the model formula, fixing the initial values).

13.3 Computation

Although the conditional likelihood for AR models can be maximized directly analytically via
least squares, other situations require numerical optimization methods. While grid search might
be useful sometimes, the general approach is the Newton-Raphson algorithm.

13.3.1 the Newton-Raphson algorithm

Our objective now shall be to maximize 𝓁 (𝜷). First, compute the gradient

∇𝓁 (𝜷) = (𝜕𝓁 (𝜷)
𝜕𝛽1

, … , 𝜕𝓁 (𝜷)
𝜕𝛽𝑑

)
⊤

and afterward solve for ∇𝓁 (𝜷) = 𝟎, for which we can use a Taylor expansion

𝟎 = ∇𝓁 (𝜷) ≈ ∇𝓁 (𝜷(0)) − ∇2𝓁 (𝜷(0)) (𝜷 − 𝜷(0)) ,

where ∇2𝓁 (𝜷) is theHessianmatrix of 𝓁 . Solving the linearized equation yields the next iteration

𝜷(𝑘+1) = 𝜷(𝑘) + ∇2𝓁 (𝜷(𝑘))
−1 ∇𝓁 (𝜷(𝑘)) .

Here a good initial estimate is important for the convergence of the iterative process. As such,
we typically use the conditional least squares, and then we iterate until convergence under some
criterion, for example

• small relative change of the solution, e.g.

∥𝜷(𝑘) − 𝜷(𝑘−1)∥
∥𝜷(𝑘−1)∥

< 𝛿;
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• small relative change in the value of the objective function, e.g.

∣𝓁 (𝜷(𝑘)) − 𝓁 (𝜷(𝑘−1))∣
∣𝓁 (𝜷(𝑘−1))∣

< 𝛿;

• small norm of the gradient vector

∥∇𝓁 (𝜷(𝑘))∥ < 𝛿.

13.4 Properties of estimators

Theorem 13.1. Under appropriate technical assumptions, the asymptotic distribution of the maximum
likelihood estimator is given as follows,

𝑛1/2 ((𝛗̂, 𝛉̂)⊤ − (𝝋, 𝜽)⊤) 𝑑→ 𝒩 (𝟎, 𝜎2𝑽−1) ,

where the block 𝑽𝝋,𝝋 of the matrix

𝑽 = (𝑽𝝋,𝝋 𝑽𝝋,𝜽
𝑽𝜽,𝝋 𝑽𝜽,𝜽

)

contains the autocovariances up to lag 𝑝 − 1 of the AR process

Φ (𝖡) Y𝑡 = ε𝑡, (13.1)

the block 𝑽𝜽,𝜽 contains the autocovariances up to lag 𝑞 − 1 of the AR process

Θ (𝖡) Z𝑡 = ε𝑡 (13.2)

and the block 𝑽𝝋,𝜽 the cross-covariances between the processes (13.1) and (13.2).

Example 13.1 (Maximum likelihood estimation asymptotics for ARMA (1, 1)). Consider the
model

X𝑡 = 𝜑1X𝑡−1 + ε𝑡 + 𝜃1ε𝑡−1,

for which the limiting distribution of 𝑛1/2((φ̂1, ̂θ1)⊤ − (𝜑1, 𝜃1)⊤) is bivariate Gaussian with mean
zero and covariance matrix 𝜎2𝑽−1. Here

𝑽 = (𝑽𝜑,𝜑 𝑽𝜑,𝜃
𝑽𝜃,𝜑 𝑽𝜃,𝜃

)

and 𝑉𝜑,𝜑 is given the autocovariance of the AR (1) process Y𝑡 = 𝜑1Y𝑡−1 + ε𝑡, that is

𝑉𝜑,𝜑 = 𝛾𝐘(0) = 𝜎2

1 − 𝜑2
1

.
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Furthermore, 𝑉𝜃,𝜃 is set by the autocovariance of the AR (1) process Z𝑡 = −𝜃1Z𝑡−1 + ε𝑡, that is

𝑉𝜃,𝜃 = 𝛾𝐙(0) = 𝜎2

1 − 𝜃2
1

.

Last, but not least, the entry 𝑉𝜑,𝜃 is given by the covariance of 𝐘 and 𝐙, that is

𝑉𝜑,𝜃 = cov(Y𝑡, Z𝑡) = cov(𝜑1Y𝑡−1 + ε𝑡, −𝜃1Z𝑡−1 + ε𝑡)
= −𝜑1𝜃1 cov(Y𝑡−1, Z𝑡−1) + 𝜎2.

In the light of stationarity we get 𝑉𝜑,𝜃 = −𝜑1𝜃1𝑉𝜑,𝜃 + 𝜎2, thus

𝑉𝜑,𝜃 = 𝜎2

1 + 𝜑1𝜃1
= 𝑉𝜃,𝜑.

Combined, this produces

𝑽 = 𝜎2 ( (1 − 𝜑2
1)−1 (1 + 𝜑1𝜃1)−1

(1 + 𝜑1𝜃1)−1 (1 − 𝜃2
1)−1 ) ,

therefore, (φ̂1, ̂θ1)⊤ is approximately normal with mean (𝜑1, 𝜃1)⊤ and covariance matrix

1
𝑛 ( (1 − 𝜑2

1)−1 (1 + 𝜑1𝜃1)−1

(1 + 𝜑1𝜃1)−1 (1 − 𝜃2
1)−1 )

−1
.

Tip

Notice here the invariance with respect to 𝜎2.
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